	肝の肉芽腫及び腎尿細管内好酸性小体(52週時のみ)	
50 ppm	毒性所見なし	毒性所見なし

(3)2年間発がん性試験(マウス)

B6C3 F_1 マウス (一群雌雄各 70 匹) を用いた混餌 (原体: 0、100、600 及び 1200 ppm) 投与による 2 年間発がん性試験が実施された。

各投与群に認められた毒性所見は表 11 に示されている。雌雄ともに、呼吸促迫及び自発運動低下等の臨床症状が認められたが、いずれの症状もこの系統のマウスで老化に伴って観察されるものであり、発生率には群間差は認められず検体投与に起因した症状ではないと考えられた。

1200 ppm 投与群雌雄で肝細胞腺腫の発生頻度が増加したが、雌雄とも悪性腫瘍である肝細胞癌には発生頻度増加が認められなかった。

本試験において、600 ppm 以上投与群の雌雄で体重増加抑制等が認められたことから、 無毒性量は雌雄とも 100 ppm(雄: 14.4 mg/kg 体重/日、雌: 17.7 mg/kg 体重/日)であると考えられた。(参照 2)

投与群	雄	雌
1200 ppm	・WBC 減少 ・肝細胞腺腫	・ 心絶対・比重量増加・ 脾絶対・比重量低下・ 変異肝細胞巣・ 肝細胞腺腫
600 ppm 以上	・体重増加抑制	・ 体重増加抑制・ PLT 増加
100 ppm	毒性所見なし	毒性所見なし

表 11 マウス 2 年間発がん性試験で認められた毒性所見

12. 生殖発生毒性試験

(1)2世代繁殖試験(ラット)

SD ラット (一群雌雄各 25 匹) を用いた混餌 (原体:0、100、600 及び 3600 ppm) 投与による 2 世代繁殖試験が実施された。

親動物及び児動物における各投与群で認められた毒性所見はそれぞれ表 12 に示されている。

3600 ppm 投与群において、P 世代親動物の雌雄で有意差はないものの受胎率が低下し、 検体投与の影響が示唆された。F1 世代親動物では、雌雄各 21 例が死亡した。これらの死 亡動物において、肉眼的病理所見では胸腺萎縮、肝及び腎の腫大または表面粗造化等の 所見が認められ、病理組織学的所見では肝・腎以外に雄で精巣の巨細胞の出現を伴う精 子形成の減少、精嚢及び前立腺の萎縮、雌で卵巣、子宮及び膣の萎縮が認められた。そ の他の臓器では、雌の生殖器、胸腺、脾及びリンパ節の萎縮、骨髄における巨核球の変 性がほとんどの例で認められ、更に種々の臓器で出血が認められた。

600 ppm 投与群 F_1 世代親動物の雄における体重変化について、 $4\sim18$ 週には対照群との有意差は認められなかったが、いくつかの週で統計学的に有意に低い値を示したこと

から、検体の影響が示唆された。

 F_1 世代に対する検体投与の影響は、P世代と比べ明らかに強く発現したが、100 ppm 投与群では検体投与による影響は認められなかった。

本試験において、親動物では 600 ppm 以上投与群の雄に体重増加抑制等、3600 ppm 投与群の雌に受胎率低下等が認められ、児動物では 3600 ppm 投与群の雌雄に低体重が認められたことから、無毒性量は親動物の雄で 100 ppm (P雄: 8.12 mg/kg 体重/日、 F_1 雄: 9.69 mg/kg 体重/日)、雌で 600 ppm (P雌: 40.3 mg/kg 体重/日、 F_1 雌: 40.3 mg/kg 体重/日、 F_1 雄: 58.7 mg/kg 体重/日、P雌: 40.3 mg/kg 体重/日、 F_1 雄: 40.3 mg/kg 体重/日、 F_1 雄: 58.7 mg/kg 体重/日、 F_1 雄: 40.3 mg/kg 体重/日、 F_1 雄: 40.3 mg/kg 体重/日)であると考えられた。 (参照 2)

		親:P、	lp・F、	報·F,	児:F ₂
	投与群		雌	雄	雌
		雄		·	μ
親	3600 ppm	・ 死亡及び切迫と殺	・ 死亡及び切迫と殺	・ 21 例死亡	• 21 例死亡
~		· 削痩、立毛、体温低下	· 削痩、立毛、体温低下	・削痩、立毛、	・ 削痩、立毛、
の		· 体重增加抑制	· 体重增加抑制	体温低下、自	i I
影		· 摂餌量低下	· 摂餌量低下	発運動低下	発運動低下
響		· 受胎率低下	· 受胎率低下	・ 摂餌量及び	・ 体重低下及び
		· 肝比重量增加	肝絶対・比重量増加	食餌効率低	体重増加抑制
		腎絶対・比重量増加	卵巣絶対・比重量増加	下	・ 摂餌量及び食
		· 精巣絶対重量低下、比重量増加	肝の組織学的変化(出血、腫脹、	· 交尾率低下、	餌効率低下
		肝の組織学的変化(壊死、線維化、	壊死、肉芽腫、線維化、有糸分	受胎動物な	• 交尾率低下、
		細胞浸潤、胆管増生)	裂、細胞浸潤、胆管炎、胆管増	l	受胎動物なし
		腎の組織学的変化(好塩基化、色	生、血栓静脈炎)		
		素沈着、石灰沈着、リンパ球浸潤、	・ 膣の萎縮及び空胞化、卵巣壊死		
1		線維化、管腔拡張、タンパク円柱)	・胸腺萎縮		
1	600 ppm	600 ppm 以下毒性所見なし	600 ppm 以下毒性所見なし	・体重低下及び体	600 ppm 以下
	以上			重増加抑制	毒性所見なし
	100 ppm			毒性所見なし	
児	3600 ppm	・低体重	・低体重	毒性所見なし	
^				1	
の	600 ppm	600 ppm 以下毒性所見なし	600 ppm 以下毒性所見なし		
影	以上				
響	100 ppm				

表 12 ラット 2 世代繁殖試験で認められた毒性所見

(2)発生毒性試験(ラット)①

SD ラット (一群雌 25 匹) の妊娠 7~17 日に強制経口(原体:0、14.3、100、700 及び 1500 mg/kg 体重/日、溶媒:コーンオイル)投与する発生毒性試験が実施された。

母動物では検体投与による影響は認められず、死亡例もなかった。1500 mg/kg 体重/日投与群の胎盤重量が対照群と比べて有意に低かったが、背景データ内の軽微な変化であり、胎盤重量に関連すると考えられる胎児重量には変化は認められず、検体投与による変化とは考えられなかった。

胎児では、臍帯ヘルニア、多指、骨格及び内臓の変異等が対照群を含めて散見されており、これらの発生頻度には検体投与に起因すると考えられる明らかな増加は認められず、自然発生的な所見と考えられた。また、化骨遅延は全投与群で認められなかった。

本試験の無毒性量は、母動物及び胎児とも 1500 mg/kg 体重/日であると考えられた。 催奇形性は認められなかった。(参照 2)

(3)発生毒性試験(ラット)②

コーンオイルを溶媒に用いた前述のラットにおける発生毒性試験[12.(2)]では、最高用量においても母動物及び胎児に対して検体の毒性兆候が認められなかったことから、メチルセルロース(MC)水溶液を溶媒として、SD ラット(一群雌 25 匹)の妊娠 7~17日にクミルロンを 1000 mg/kg 体重/日で強制経口投与する発生毒性試験が実施された。母動物では検体投与による影響は認められず、死亡例もなかった。

胎児では、検体投与群で胸骨核の化骨数が有意な低値を示し、中手骨の化骨数が有意な高値を示したが、いずれも軽微な変化であり明らかな胎児の発育亢進を示唆する変化ではなかった。その他の骨化遅延、変異及び異常の発生率に対照群との差は認められなかった。

本試験の無毒性量は、母動物及び胎児とも 1000 mg/kg 体重/日であると考えられた。 催奇形性は認められなかった。(参照 2)

(4) 発生毒性試験 (ウサギ) ①

NZW ウサギ (一群雌 15 匹) の妊娠 6~18 日に強制経口 (原体:0、60、120 及び300 mg/kg 体重/日、溶媒:コーンオイル) 投与する発生毒性試験が実施された。

母動物での死亡例は、120 mg/kg 体重/日投与群の1例(腰椎骨折が疑われたため切迫と殺)及び対照群の1例(肺への誤投与)のみであり、検体投与に起因すると考えられる死亡例はなかった。その他には、統計学的に有意な差が認められた検査項目があったものの、いずれも用量に依存した変化ではなく、検体投与による変化とは考えられなかった。

胎児の内臓検査において、肝奇形結節が対照群を含む各群の複数例に、また心室中隔 欠損、右房室発育不全及び三尖弁狭窄などを伴った動脈管遺残及び肺動脈形成不全が重 度な奇形として観察されたが、いずれもその発生率に用量依存性の増加は認められず、 検体投与の影響を示唆する変化ではないと考えられた。その他に検体投与に起因する変 化は認められなかった。

本試験の無毒性量は、母動物及び胎児とも 300 mg/kg 体重/日であると考えられた。催 奇形性は認められなかった。(参照 2)

(5)発生毒性試験(ウサギ)②

コーンオイルを溶媒に用いた前述のウサギにおける発生毒性試験[12.(4)]では、最高用量においても母動物及び胎児に対して検体の毒性兆候が認められなかったことから、MC水溶液を溶媒として、NZW ウサギ(一群雌 15 匹)の妊娠 6~18 日にクミルロンを強制経口(原体:0、100、300 及び 1000 mg/kg 体重/日)投与する発生毒性試験が実施された。

母動物では、対照群に誤投与及び誤嚥によると考えられる死亡例が各 1 例、また対照群にもう 1 例及び 1000 mg/kg 体重/日投与群に 1 例死亡例が認められたが、死因は確定

出来なかった。更に 300 mg/kg 体重/日投与群の 1 例で腰椎骨折が疑われ、切迫と殺された。これら以外の死亡例は認められなかった。1000 mg/kg 体重/日投与群で流産が 1 例 観察されたが、剖検の結果、肺の褐色斑点が認められたのみであり、流産の原因は不明であった。1000 mg/kg 体重/日投与群では脾絶対・比重量増加が認められ、検体投与による影響と考えられた。

胎児では、どの試験項目においても用量依存性の変化は認められず、検体投与による 変化は観察されなかった。

本試験において、1000 mg/kg 体重/日投与群の母動物で脾絶対・比重量増加が認められたことから、母動物の無毒性量は 300 mg/kg 体重/日、胎児の無毒性量は 1000 mg/kg 体重/日であると判断された。催奇形性は認められなかった。(参照 2)

13. 遺伝毒性試験

クミルロン及び代謝物を用いた各種遺伝毒性試験が実施された。結果は表 13 に示されている。

クミルロンを用いた試験では、細菌を用いた DNA 修復試験及び復帰突然変異試験、 ほ乳類培養細胞を用いた染色体異常試験、マウスを用いた小核試験が実施された。細菌 を用いた復帰突然変異試験及びチャイニーズハムスター肺線維芽細胞を用いた染色体異 常試験において弱い陽性結果が得られているが、その他の試験においては全て陰性であった。復帰突然変異試験では、代謝活性化系非存在下での S.typhimurium TA1535 株に のみ弱い遺伝子突然変異性が認められた。また、チャイニーズハムスター肺線維芽細胞 を用いた染色体異常試験では、代謝活性化系存在下で弱い染色体異常誘発作用が認められたが、同じ指標である染色体異常誘発性を in vivo で評価する小核試験において限界用 量まで試験された結果が陰性であった点も考慮すると、生体において問題となる遺伝毒 性はないものと考えられた。

代謝物VIを用いた復帰突然変異試験では、原体と同様 TA1535 株において弱い陽性が認められているが、陰性対照群の 2 倍を超えない程度のものであり、かつ代謝活性化系の導入により陰性となっていることから、問題はないと考えられた。代謝物VIの小核試験を含め、他の代謝物に関する試験結果は全て陰性であった。(参照 2)

検体		試験	対象	処理濃度・投与量	結果
		DNA 修復 試験	B. subtilis H17、M45 株	550~8800 μg/disc (-S9) 275~4400 μg/disc (+S9)	陰性
原体	in vitro	復帰突然変異 試験	S. typhimurium TA98、TA100、TA1535、 TA1537 株 E. coli WP2 uvrA 株	(本試験) 156~5000 µg/plate (+/·S9) (追加試験 1・TA100 のみ) 10.0~320 µg/plate (+/·S9) (追加試験 2・TA1535 のみ) 0.63~20.0 µg/plate (+/·S9)	陽性口
		染色体異常 試験	チャイニーズハムスター肺 線維芽細胞(CHL/IU)	110~880 μg/ml (+/-S9)	陽性 2)
	in vivo	小核試験	ICR マウス骨髄細胞	500, 1000, 2000 mg/kg 体重 (単回強制経口投与)	陰性

表 13 遺伝毒性試験概要(原体及び代謝物)

		復帰突然変異	S. typhimurium	(本試験)	
100		試験	TA98, TA100, TA1535,	8.0~5000 μg/plate (+/-S9)	
代	in vitro		TA1537 株	(追加試験 1)	弱陽性 3)
謝	111 11110	J	E. coli WP2uvrA 株	313~5000 μg/plate (+/-S9)	3319011
物				(追加試験 2・TA1535 のみ)	1
VI			<u> </u>	313~5000 μg/plate (-S9)	
		小核試験	ICR マウス骨髄細胞	500, 1000, 2000 mg/kg 体重	陰性
	in vivo			(単回強制経口投与)	陸性
代		復帰突然変異	S. typhimurium	(本試験)	
謝	in vitro	試験	TA98、TA100、TA1535、	8.0~5000 μg/plate (+/-S9)	陰性
物	III VILFO		TA1537 株	(追加試験)	院性
VIII			E. coli WP2uvrA 株	313~5000 μg/plate (+/-S9)	
代		復帰突然変異	S. typhimurium	(本試験)	
謝		試験	TA98、TA100、TA1535、	8.0~5000 μg/plate (+/-S9)	PA J4
物	in vitro		TA1537 株	(追加試験)	陰性
IX			E. coli WP2uvrA 株	313~5000 μg/plate (+/-S9)	

注) +/·S9: 代謝活性化系存在下及び非存在下

1): 代謝活性化系非存在下における TA1535 株においてのみ陽性、他の試験系では陰性

2): 代謝活性化系存在下(6 時間処理、18 時間培養後標本作製)で陽性

3): 代謝活性化系非存在下における TA1535 株において弱陽性、他の試験系では陰性

14. その他の試験一肝薬物代謝酵素誘導確認試験

 $B6C3F_1$ マウス(一群雄各 16 匹、追加投与群は 12 匹)を用い、単回強制経口(原体: 0、2500[追加投与群]及び <math>5000 mg/kg 体重、溶媒:コーンオイル)投与による肝薬物代謝酵素誘導確認試験(陽性対照:PB、150 mg/kg 体重)が実施された。

一般状態及び体重以外の検査項目は投与1日後及び3日後に実施された。死亡例は、 対照群を含めた全群で認められなかった。

各投与群に認められた毒性所見は表 14 に示されている。クミルロン投与群と PB 投与群との間で P450 量の推移が異なったが、この原因として P450 誘導速度の違い、誘導された P450 のタイプの違い、もしくはクミルロン投与によって生じた肝細胞の障害等が考えられた。

また、PCNA標識率について、クミルロン 5000mg/kg 体重投与群及び PB 投与群を対照群と比較した結果、投与1日後ではともに約2倍、3日後ではそれぞれ約12倍及び3倍の陽性率を示し、肝細胞に対する増殖活性化はクミルロン投与群の方がより明らかであった。免疫組織化学検査ではクミルロン投与群と PB 投与群は同様な染色動態を示した。

以上の結果から、クミルロンの高用量をマウスに単回投与し、生化学的及び病理組織学的手法を用いて検索した結果、クミルロンは PB に類似した諸変化をマウスの肝に引き起こすことが確認された。従って、これらが発がん性試験における肝細胞腺腫増加に関与している可能性が示唆された。(参照 2)

表 14 マウス肝薬物代謝酵素誘導確認試験で認められた毒性所見

投与群	毒性所見
クミルロン	· AST 及び ALT 増加(3 日後)
5000 mg/kg 体重	・ 肝絶対・比重量増加(1日後及び3日後)
	・ 肝の黒色斑(1日後)

	・ 門脈周囲部の浮腫、出血を伴う肝細胞壊死 (1 日後)
	・肝細胞壊死の程度増強
クミルロン	・ 肝白色及び赤色斑 (3 日後)
2500 mg/kg 体重	・ 肝色素沈着、血管拡張及び細胞浸潤(1日後)
以上	・ 肝細胞壊死 (軽度~中程度)、線維化、胆管再生像及び核の有糸
	分裂(3日後)
	· P450 増加(1 日後)
PB (陽性対照)	· 歩行異常 (1~2 時間)、腹臥位 (6 時間)
150 mg/kg 体重	・ 肝絶対・比重量増加(1日後及び3日後)
-	・ 肝中心静脈周囲~中間帯の肝細胞腫脹(3日後)
	・ ミクロソーム蛋白含量増加(3日後)
	· P450 増加(3 日後)

亚、総合評価

参照に挙げた資料を用いて、農薬「クミルロン」の食品健康影響評価を実施した。

ラットを用いた動物体内運命試験において、クミルロンは速やかに吸収、排泄された。主要排泄経路は糞中(70.5~96.0%TAR)であり、主要成分として親化合物、XⅡ及びXⅢが検出された。尿中の主要成分はⅢ及びVIであり、親化合物は検出されなかった。推定代謝経路は、ベンジル位炭素の酸化と続いて起こる加水分解及びグリシン抱合であると考えられた。

稲を用いた植物体内運命試験において、主要成分は親化合物と代謝物Ⅱ、Ⅵ及びⅦであった。推定代謝経路は加水分解と酸化と考えられた。

水稲を用いて、クミルロン、代謝物 II 及びVIを分析対象化合物とした作物残留試験が実施されており、玄米での最高値は代謝物VIの 0.06 mg/kg、他はいずれの化合物も定量限界未満であった。

各種毒性試験結果から、クミルロン投与により主に肝臓に影響が認められた。催奇形性 及び生体において問題となる遺伝毒性は認められなかった。発がん性試験において、雌雄 マウスに肝細胞腺腫の発生頻度増加が認められたが、遺伝毒性試験等の結果から、発生機 序は遺伝毒性メカニズムとは考え難く、本剤の評価にあたり閾値を設定することは可能で あると考えられた。

各種試験結果から、農産物中の暴露評価対象物質をクミルロン(親化合物のみ)と設定した。

各試験の無毒性量等は表 15 に示されている。

食品安全委員会農薬専門調査会は、各試験の無毒性量の最小値がイヌを用いた 1 年間慢性毒性試験の 1 mg/kg 体重/日であったことから、これを根拠として、安全係数 100 で除した 0.01 mg/kg 体重/日を一日摂取許容量 (ADI) と設定した。

 ADI
 0.01 mg/kg 体重/日

 (ADI 設定根拠資料)
 慢性毒性試験

(動物種) イヌ

(期間)1年間(投与方法)強制経口

(無毒性量) 1 mg/kg 体重/日

(安全係数) 100

暴露量については、当評価結果を踏まえて暫定基準値の見直しを行う際に確認することとする。

表 15 各試験における無毒性量等

動物種	試験	投与量(mg/kg 体重/日)	無毒性量 (mg/kg 体重/日) ¹⁾ 農薬抄録
ラット	90 日間	0, 100, 600, 3600 ppm	雄:7.00 雌:7.72
	亜急性	雄: 0, 7.00, 42.3, 257	
	毒性試験	雌: 0, 7.72, 46.8, 280	雌雄:肝比重量増加等
	2年間	0, 50, 200, 800, 1600 ppm	雄: 2.67 雌: 3.40
	慢性毒性	-, -, -, -, -, -, -, -, -, -, -, -, -, -	
	/発がん性	雄: 0, 2.67, 10.8 43.6, 90.8	雄:肝の肉芽腫等
	併合試験	雌: 0, 3.40, 13.5, 54.7, 113	雌:慢性腎症等
			(発がん性は認められない)
	2世代	0, 100, 600, 3600 ppm	親動物
	繁殖試験	P雄:0,8.12,49.3,279	P雄:8.12 F1雄:9.69
		P雌: 0, 6.95, 40.3, 247	P雌:40.3 F ₁ 雄:40.3 児動物及び繁殖能
		F ₁ 雄: 0, 9.69, 58.7, 315	P雄:49.3 F1雄:58.7
		F ₁ 雌: 0, 6.89, 40.3, 338	P雌: 40.3 F1雄: 40.3
			1 mg. 10.0
			親動物:体重増加抑制、受胎率低下等
			児動物:低体重
			繁殖能:受胎率低下等
	発生毒性 試験①	0, 14.3, 100, 700, 1500	母動物及び胎児:1500
			毒性所見なし
	-		(催奇形性は認められない)
	発生毒性 試験②	0, 1000	母動物及び胎児: 1000
			毒性所見なし
	00 53 66	0.100.400.1000.6400.05000	(催奇形性は認められない)
マウス	90 日間 亜急性	0, 100, 400, 1600, 6400, 25600 ppm	雄:67.5 雌:78.8
	毒性試験	雄: 0, 16.5, 67.5, 273, 1120, 4580	- 雌雄:肝絶対・比重量増加等
		雌: 0, 20.5, 78.8, 322, 1280, 5300	
	2年間	0, 100, 600, 1200 ppm	雄:14.4 雌:17.7
	発がん性	+# 0 14 4 0F 0 1F0	- 1144 444 Ab = To 136 don 45 44 1 1 1 1 1
	試験	雄: 0, 14.4, 87.3, 178	雌雄:体重增加抑制等
		雌: 0, 17.7, 109, 219	1200 ppm 投与群雌雄で肝細胞腺腫 の発生頻度増加
ウサギ	発生毒性	0, 60, 120, 300	母動物及び胎児:300
777	試験①	0, 50, 120, 500	
			毒性所見なし
			(催奇形性は認められない)
	発生毒性 試験②	0, 100, 300, 1000	母動物:300 胎児:1000
			母動物: 脾絶対・比重量増加
			胎児:毒性所見なし
			(催奇形性は認められない)
イヌ	90 日間	0, 3, 30, 300	雄:3 雌:3
	亜急性		white
	毒性試験		雌雄:小葉中心性肝細胞肥大等

	1年間	0, 1, 10, 100	雄:1 雌:1
	慢性毒性		
	試験		雌雄:小葉中心性肝細胞肥大
			NOAEL: 1
ADI			ADI: 0.01
			SF: 100
ADI 設定根拠資料			イヌ1年間慢性毒性試験

NOAEL:無毒性量 SF:安全係数 ADI:一日摂取許容量

^{1):}無毒性量欄には、最小毒性量で認められた主な毒性所見等を記した。

<別紙1:代謝物/分解物略称>

略称	化学名
П	2-クロロ安息香酸
Ш	2-クロロ馬尿酸
IV	2-クロロベンジルウレア
VI	α,α-ジメチルベンジルウレア
VII	2-フェニルー2ープロパノール
VIII	1-(2-クロロベンゾイル)-3-(1-メチル-1-フェニルエチル)ウレア
IX	<i>N</i> -ベンジル- <i>N</i> -(2·クロロ-4·ヒドロキシベンジル)ウレア
X	N-ベンジル- N -(2-クロロ- 6 -ヒドロキシベンジル)ウレア
ΧI	(NIH シフトによるIXまたはXの OH と Cl の位置異性)
ΧШ	{[(ベンジルアミノ)カルボニル]アミノ}-(2-クロロフェニル)メタンスルフォン酸
ΧШ	(ベンジルアミノ)カルボニル(2-クロロベンジル)アミドスルファメート

<別紙2:検査値等略称>

略称	名称
A/G 比	アルブミン/グロブリン比
ai	有効成分量
Alb	アルブミン
ALP	アルカリフォスファターゼ
ALT	アラニンアミノトランスフェラーゼ (=グルタミン酸ピルビン酸トランスアミナーゼ (GPT))
AST	アスパラギン酸アミノトランスフェラーゼ (=グルタミン酸オキサロ酢酸トランスアミナーゼ (GOT))
BUN	血液尿素窒素
Cre	クレアチニン
Cmax	最高濃度
Glu	グルコース (血糖)
Hb	ヘモグロビン (血色素量)
Ht	ヘマトクリット値
LC ₅₀	半数致死濃度
$\overline{\mathrm{LD}_{50}}$	半数致死量
LDH	乳酸脱水素酵素
Lym	リンパ球数
MC	メチルセルロース
MCH	平均赤血球血色素量
MCHC	平均赤血球血色素濃度
MCV	平均赤血球容積
Mon	単球数
Neu	好中球数
P450	チトクローム P450
PB	フェノバルビタール
PCNA	增殖細胞核抗原
PHI	最終使用から収穫までの日数
PLT	血小板数
RBC	赤血球数
TAR	総処理(投与)放射能
T.Bil	総ビリルビン
T.Chol	総コレステロール
T _{max}	最高濃度到達時間
TP	総蛋白質
TRR	総残留放射能
T _{1/2}	半減期
WBC	白血球数

<参照>

- 1 食品、添加物等の規格基準(昭和 34 年厚生省告示第 370 号)の一部を改正する件(平成 17 年 11 月 29 日付、平成 17 年厚生労働省告示第 499 号)
- 2 農薬抄録クミルロン (除草剤) 平成 18 年 8 月 31 日改訂: 丸紅株式会社
- 3 食品健康影響評価について:食品安全委員会第 177 回会合資料 1-1 (URL; http://www.fsc.go.jp/iinkai/i-dai177/dai177kai-siryou1-1.pdf)
- 4 暫定基準を設定した農薬等に係る食品安全基本法第24条第2項の規定に基づく食品健康 影響評価について:食品安全委員会第177回会合資料1-3
 - (URL; http://www.fsc.go.jp/iinkai/i-dai177/dai177kai-siryou1-3.pdf)
- 5 食品安全委員会農薬専門調査会確認評価第三部会第 4 回会合 (URL; http://www.fsc.go.jp/senmon/nouyaku/kakunin3_dai4/index.html)
- 6 食品健康影響評価について:食品安全委員会第193回会合資料1-1 (URL; http://www.fsc.go.jp/iinkai/i·dai193/dai193kai-siryou1·1.pdf)
- 7 「クミルロン」及び「シメコナゾール」の食品安全基本法第24条第1項に基づく食品 健康影響評価について:食品安全委員会第193回会合資料1-2 (URL; http://www.fsc.go.jp/iinkai/i·dai193/dai193kai·siryou1-2.pdf)
- 8 食品安全委員会農薬専門調査会幹事会第 20 回会合 (URL; http://www.fsc.go.jp/senmon/nouyaku/kanjikai_dai20/index.html)