# 農薬評価書

# オリサストロビン

(第2版)

2008年3月

食品安全委員会

|    |                       |       |                   |                                         | 目           | 次                 |                     |      | 頁  |
|----|-----------------------|-------|-------------------|-----------------------------------------|-------------|-------------------|---------------------|------|----|
| 0  | 審議の                   | 経緯・・・ |                   |                                         |             |                   |                     | <br> | 3  |
| 0  | 食品安                   | 全委員会  | 委員名簿              |                                         |             |                   |                     | <br> | 3  |
| 0  | 食品安                   | 全委員会  | 農薬専門語             | 調査会専門委                                  | 員名簿         |                   |                     | <br> | 4  |
| 0  | 要約 •                  |       | • • • • • • • • • |                                         |             |                   |                     | <br> | 6  |
|    |                       |       |                   |                                         |             |                   |                     |      |    |
| Ι. | 評価対                   | 象農薬の  | 概要 ••••           | •••••                                   |             |                   |                     | <br> | 7  |
|    | 1. 用                  | 途     | • • • • • • • • • |                                         |             | • • • • • • • • • | • • • • • • • • • • | <br> | 7  |
|    | 2. 有                  | 効成分の  | 一般名 ••            | • • • • • • • • • • • • • • • • • • • • | • • • • • • |                   |                     | <br> | 7  |
|    |                       |       |                   |                                         |             |                   |                     |      | 7  |
|    |                       |       |                   |                                         |             |                   |                     |      | 7  |
|    |                       |       |                   |                                         |             |                   |                     |      | 7  |
|    |                       |       |                   |                                         |             |                   |                     |      | 7  |
|    | 7. 開                  | 発の経緯  |                   | • • • • • • • • • • • • • • • • • • • • |             |                   |                     | <br> | 7  |
|    |                       |       |                   |                                         |             |                   |                     |      |    |
| Π. |                       |       |                   | • • • • • • • • • • • • • • • • • • • • |             |                   |                     |      | 8  |
|    |                       |       |                   | • • • • • • • • • • • • • • • • • • • • |             |                   |                     |      | 8  |
|    |                       |       |                   | • • • • • • • • • • • • • • • • • • • • |             |                   |                     |      | 9  |
|    |                       |       |                   | · · · · · · · · · · · · · · · · · · ·   |             |                   |                     |      | 10 |
|    | (1)                   |       |                   | 運命試験①                                   |             |                   |                     |      | 10 |
|    | (2)                   |       |                   | 運命試験②                                   |             |                   |                     |      |    |
|    | (3)                   |       |                   | • • • • • • • • • • • • • • • • • • • • |             |                   |                     |      |    |
|    | 4. 水 <sup>□</sup> (1) |       |                   | • • • • • • • • • • • • • • • • • • • • |             |                   |                     |      | 11 |
|    | (2)                   |       |                   | • • • • • • • • • • • • • • • • • • • • |             |                   |                     |      |    |
|    | <b>\</b> —/           |       |                   |                                         |             |                   |                     |      |    |
|    |                       |       |                   |                                         |             |                   |                     | <br> | 12 |
|    |                       |       |                   | • • • • • • • • • • • • • • • • • • • • |             |                   |                     | <br> | 12 |
|    |                       |       |                   | 大推定残留值                                  |             |                   |                     |      |    |
|    |                       |       |                   | 人在足戏曲但                                  |             |                   |                     |      |    |
|    |                       |       |                   |                                         |             |                   |                     |      |    |
|    |                       |       |                   | • • • • • • • • • • • • • • • • • • • • |             |                   |                     |      |    |
|    |                       |       |                   | ∃及び皮膚感作                                 |             |                   |                     |      |    |
|    |                       |       |                   |                                         |             |                   |                     |      |    |
|    | (1)                   |       |                   | 生試験(ラット)                                |             |                   |                     |      |    |
|    | (2)                   |       |                   | 生試験(追加試                                 |             |                   |                     |      |    |
|    |                       |       |                   | 生試験(イマ)・                                |             |                   |                     |      |    |

|    |                |       | 28 日間亜急性神経毒性試験(ラット)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・   |    |
|----|----------------|-------|-----------------------------------------------------------|----|
|    | 12.            |       | 毒性試験及び発がん性試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・          |    |
|    |                | (1)   | 1年間慢性毒性試験(イヌ)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・         | 18 |
|    |                | (2)   | 2年間慢性毒性/発がん性併合試験(ラット)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 19 |
|    |                | (3)   | 18 ヵ月間発がん性試験(マウス) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・    | 20 |
|    | 13.            | 生殖    | 発生毒性試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・               | 21 |
|    |                |       | 2 世代繁殖試験(ラット)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・         |    |
|    |                |       | 発生毒性試験(ラット)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・           |    |
|    |                |       | 発生毒性試験(ウサギ) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・          |    |
|    | 14.            | 遺伝    | 毒性試験 ••••••                                               | 23 |
|    | 15.            | その    | 他の毒性試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・               | 24 |
|    |                | (1)   | 十二指腸粘膜肥厚のメカニズムについて ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・   | 24 |
|    |                | (2)   | 甲状腺ろ胞細胞腺腫のメカニズムについて ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・  | 27 |
| Ш. | 食品             | 品健康   | 影響評価 ••••••                                               | 29 |
|    |                |       | t謝物/分解物略称 ·····                                           |    |
| •  | 別組             | ₹ 2:₹ | <b>食査値等略称 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</b>        | 35 |
|    | <del>矣</del> 収 | 3     |                                                           |    |

#### <審議の経緯>

第1版関係

2004年 1月 16日 農林水産省より厚生労働省へ農薬登録申請に係る連絡及び基準設定依頼(新規:稲)

2004年 2月 3日 厚生労働大臣より残留基準設定に係る食品健康影響評価 について要請(厚生労働省発食安第 0203002 号)、関係書 類の接受(参照 1~51)

2004年 2月 12日 第32回食品安全委員会(要請事項説明)(参照52)

2004年 4月 7日 第9回農薬専門調査会 (参照 53)

2005年 3月 29日 追加資料受理 (参照 54、55)

2005 年 7月 6日 第32回農薬専門調査会 (参照56)

2005年 8月 17日 追加資料受理 (参照 57、58)

2005年 10月 12日 第37回農薬専門調査会 (参照59)

2005年 11月 2日 第118回食品安全委員会(報告)

2005年 11月 2日 より 2005年 11月 27日 国民からの御意見・情報の募集

2005年 12月 7日 農薬専門調査会座長より食品安全委員会委員長へ報告

2005年 12月 8日 第123回食品安全委員会(報告)

(同日付厚生労働大臣に通知) (参照 60)

2006年 7月 11日 残留農薬基準告示 (参照 61)

2006年 8月 16日 初回農薬登録

#### 第2版関係

2007年 12月 26日 農林水産省より厚生労働省へ基準設定依頼 (魚介類)

2008年 1月 11日 厚生労働大臣より残留基準設定に係る食品健康影響評価 について要請(厚生労働省発食安第 0111002 号)、関係書 類の接受(参照 62~64)

2008年 1月 17日 第 222 回食品安全委員会 (要請事項説明) (参照 65)

2008年 3月 5日 第37回農薬専門調査会幹事会 (参照66)

2008年 3月 日 農薬専門調査会座長より食品安全委員会委員長へ報告

2008年 3月 27日 第231回食品安全委員会(報告)

(同日付け厚生労働大臣へ通知)

# <食品安全委員会委員名簿>

(2006年6月30日まで) (2006年12月20日まで) (2006年12月21日から)

寺田雅昭(委員長) 寺田雅昭(委員長) 見上 彪(委員長)

寺尾允男(委員長代理) 見上 彪(委員長代理) 小泉直子(委員長代理\*)

小泉直子 小泉直子 長尾 拓

 坂本元子
 長尾 拓
 野村一正

 中村靖彦
 野村一正
 畑江敬子

本間清一 見上 彪

畑江敬子 本間清一 廣瀬雅雄\*\*

本間清一

\*:2007年2月1日から
\*\*:2007年4月1日から

# <食品安全委員会農薬専門調査会専門委員名簿>

(2006年3月31日まで)

 鈴木勝士(座長)
 小澤正吾

 廣瀬雅雄(座長代理)
 高木篤也

 石井康雄
 武田明治

 江馬 眞
 津田修治\*

 太田敏博
 津田洋幸

出川雅邦 長尾哲二

 林
 真

 平塚
 明

吉田 緑\*: 2005年10月1日から

# (2007年3月31日まで)

鈴木勝士 (座長) 三枝順三 廣瀬雅雄 (座長代理) 佐々木有 赤池昭紀 高木篤也 石井康雄 玉井郁巳 泉 啓介 田村廣人 上路雅子 津田修治 臼井健二 津田洋幸 江馬 眞 出川雅邦 大澤貫寿 長尾哲二 太田敏博 中澤憲一 大谷 浩 納屋聖人 小澤正吾 成瀬一郎 小林裕子 布柴達男

根林平藤細松柳山山與吉岸 塚本川本井崎手語田友 成正清徳浩丈靖思明明清司磨史至洋緑

若栗 忍

#### (2007年4月1日から)

鈴木勝士 (座長) 三枝順三 林 真(座長代理\*) 佐々木有 赤池昭紀 代田眞理子\*\*\*\* 石井康雄 高木篤也 泉 啓介 玉井郁巳 上路雅子 田村廣人 臼井健二 津田修治 江馬 眞 津田洋幸 大澤貫寿 出川雅邦

西布根平藤細松柳山川柴岸塚本川本井崎秋達友 成正清徳浩寺高明明清司磨史\*\*

太田敏博 大谷 浩 小澤正吾 小林裕子

長尾哲二 中澤憲一 納屋聖人 成瀬一郎\*\*\*

山手丈至 與語靖洋 吉田 緑 若栗 忍

\*: 2007年4月11日から \*\*: 2007年4月25日から \*\*\*: 2007年6月30日まで \*\*\*\*: 2007年7月 1日から ストロビルリン系の殺菌剤である「オリサストロビン」(CAS No.248583-16-1) について、各種試験成績等を用いて、食品健康影響評価を実施した。

評価に供した試験成績は、動物体内運命(ラット)、植物体内運命(水稲)、土壌中運命、水中運命、土壌残留、作物残留、急性毒性(ラット)、亜急性毒性(ラット及びイヌ)、慢性毒性(イヌ)、慢性毒性/発がん性併合(ラット)、発がん性(マウス)、2 世代繁殖(ラット)、発生毒性(ラット及びウサギ)、遺伝毒性試験等である。

試験結果から、催奇形性及び生体において問題となる遺伝毒性は認められなかった。 発がん性試験では、十二指腸(ラット、マウス)及び甲状腺(ラット)で腫瘍が認められたが、いずれも発生機序は遺伝毒性メカニズムとは考えがたく、評価にあたり閾値を 設定することは可能であると考えられる。

各試験で得られた無毒性量の最小値は、ラットを用いた 2 年間慢性毒性/発がん性併合試験の  $5.2 \, \text{mg/kg}$  体重/日であったことから、これを根拠として、安全係数  $100 \,$  で除した  $0.052 \, \text{mg/kg}$  体重/日を一日摂取許容量(ADI)と設定した。

#### I. 評価対象農薬の概要

#### 1. 用途

殺菌剤

#### 2. 有効成分の一般名

和名:オリサストロビン

英名: orysastrobin (ISO 名)

#### 3. 化学名

#### **IUPAC**

和名:(2*E*)-2-(メトキシイミノ)-2-{2-[(3*E*, 5*E*, 6*E*)-5-(メトキシイミノ)-4,6-ジメチル-2,8-ジオキサ-3,7-ジアザノナ-3,6-ジエン-1-イル]フェニル}-*N*-メチルアセトアミド

英名:(2*E*)-2-(methoxyimino)-2-{2-[(3*E*, 5*E*, 6*E*)-5-(methoxyimino)-4,6-dimethyl-2,8-dioxa-3,7-diazanona-3,6-dien-1-yl]phenyl}-*N*-methylacetamide

#### CAS (No. 248583-16-1)

和名:  $(\alpha E)$ - $\alpha$ -(メトキシイミノ)-2-[(3E,5E,6E)-5-(メトキシイミノ)-4,6-ジメチル-2,8-ジオキサ-3,7-ジアザ-3,6-ノナジエニル]-Nメチルベンゼンアセトアミド

英名: $(\alpha E)$ - $\alpha$ -(methoxyimino)-2-[(3E, 5E, 6E)-5-(methoxyimino)-4,6-dimethyl-2,8-dioxa-3,7-diaza-3,6-nonadienyl]-N-methylbenzeneacetamide

#### 4. 分子式

 $C_{18}H_{25}N_5O_5$ 

5. 分子量

391.4

#### 6. 構造式

#### 7. 開発の経緯

オリサストロビンは 1995 年 12 月 BASF・アクチェンゲゼルシャフト社 (独) により開発されたストロビルリン系殺菌剤であり、ミトコンドリア内のチトクローム電子伝達系阻害による呼吸阻害により殺菌活性を示す。日本が最初の登録申請国であり、他国では登録されていない。

オリサストロビンは 2006 年 8 月 16 日に初めて登録され、今回、魚介類への残留 基準値の設定が申請されている。

#### Ⅱ.安全性に係る試験の概要

各種運命試験(Ⅱ.1~4)は、オリサストロビンのフェニル環及び 1-methyl 基並 びに butylidene 基(側鎖)の両部分を <sup>14</sup>C で標識したもの([pmb-<sup>14</sup>C]オリサスト ロビン)、1-methyl 基及び butylidene 基(側鎖) の炭素を <sup>14</sup>C で標識したもの ([meb-14C]オリサストロビン) 及びフェニル環の炭素を均一に 14C で標識したも の([phe-14C]オリサストロビン)を用いて実施された。放射能濃度及び代謝物濃度 はとくに断りがない場合、オリサストロビンに換算した。代謝物/分解物略称及び検 **査値等略称は別紙1及び2に示されている。** 

#### 1. 動物体内運命試験

[pmb-14C]オリサストロビンを低用量 (25 mg/kg 体重)、中用量 (80 mg/kg 体重) または高用量(250 mg/kg 体重)で単回経口投与し、ラットを用いた動物体内運命 試験が行われた。

血漿中放射能の最高濃度(C<sub>max</sub>)は、低用量群で1時間後(T<sub>max</sub>)に4.61~7.04  $\mu g/g$ 、中用量投与群で 8 時間後に  $11.5 \sim 16.0~\mu g/g$ 、高用量群で 24 時間後に 21.6 $\sim\!25.9\,\mu\mathrm{g}\,/\mathrm{g}$  であった。消失半減期( $T_{1/2}$ )は二相性を示し、低用量群で  $7.9\!\sim\!10.5$ 及び33.8~35.2時間、中用量群で7.3~9.5及び37.8~41.7時間、高用量群で12.1  $\sim 15.3$  及び  $31.9 \sim 35.4$  時間であった。

投与後 168 時間で、尿中に総投与放射能量 (TAR) の 58.0~60.4%、糞中に 28.6 ~37.9%TAR、呼気中に 3.8~5.6%TAR 排泄された。48 時間後までの胆汁中排泄 は、低用量投与群の雌雄及び高用量投与群の雄で 71.1~74.3%TAR、高用量投与群 の雌で 45.8%TAR であった。オリサストロビンは 84.9~94.3%TAR が投与後 48 時間で排泄された。胆汁中及び尿中に排泄された放射能量が 100%TAR 以上である ことから、オリサストロビンの消化管吸収率は極めて高く、ほぼ全量が吸収されて いるものと考えられた。また、胆汁中に排泄された放射能の約50%が消化管から再 吸収され、腸肝循環されていることが示唆された。

オリサストロビンの低用量及び高用量群の主な組織の残留放射能は表 1 に示さ れている。(参照2)

| 表 | 1  | 主な組織の残留放射能 | $(\mu\mathrm{g/g})$ |
|---|----|------------|---------------------|
|   | ńn | 漿中最高濃度到達時* |                     |
|   |    |            |                     |

|    | 1 | 血漿中最高濃度到達時※                                                                | 投与 168 時間後 |  |
|----|---|----------------------------------------------------------------------------|------------|--|
| 低  | 雄 | 胃(224)、腸管(80.4)、肝臟(43.6)、膵臓(17.1)、腎(14.4)、副腎(9.28)                         | 全ての組織で     |  |
| 用量 | 雌 | 胃(287)、腸管(139)、膵臓(27.3)、肝臓(18.8)、甲状腺(16.9)、<br>副腎(15.7)、卵巣(13.0)、子宮(10.4)  | 1.5 以下     |  |
| 高用 | 雄 | 腸管(153)、甲状腺(29.4)、胃(26.3)、肝臓(27.6)、膵臓(24.5)、腎(23.1)、<br>副腎(17.8)           | 全ての組織で     |  |
| 量  | 雌 | 腸管(144)、卵巣(54.1)、子宮(48.3)、肝臓(32.7)、甲状腺(29.5)、胃(24.4)、<br>腎臓(22.3)、副腎(21.6) | 13.2 以下    |  |

尿中排泄物からはオリサストロビンは検出されず、主要代謝物として F010、F014、F007 及び F002 が、投与 48 時間後までにそれぞれ  $5.1\sim7.7$ 、 $0.8\sim2.1$ 、 $1.1\sim6.4$  及び  $0.5\sim7.2\%$  TAR 検出された。糞中代謝物(低用量  $0\sim24$  時間後、高用量  $0\sim48$  時間後)からは、オリサストロビンが  $0\sim2.0\%$  TAR 検出され、主要代謝物として F008、F015、F014 及び F044 が  $0.8\sim1.7$ 、 $0.4\sim1.1$ 、 $0.5\sim1.3$  及び  $0.5\sim1.0\%$  TAR 検出された。胆汁中からはオリサストロビンは検出されず、主要代謝物として F019 及び F022(いずれもグルクロン酸抱合体)が  $6.3\sim10.3$  及び  $5.5\sim7.8\%$  TAR 検出された。肝臓中及び腎臓中からの代謝物としては、尿及び胆汁中代謝物の多くが含まれ、いずれも 0.3% TAR 以下であった。

オリサストロビンの主要代謝経路は、①オリサストロビンの側鎖とビオフォア部位(メトキシイミノ-N-メチル-アセトアミド-置換フェニル環)の脱メチル化、残存メチル基の水酸化、これらの代謝物のグルクロン酸抱合体化、②オリサストロビンの側鎖におけるメトキシイミノ基のケトン化、第二のメトキシイミノ基も酸化された後のジオール体への還元、続いて側鎖の開裂後、生成したアルデヒドの酸化によるカルボン酸代謝物の生成、③オリサストロビンのオキシムエーテル結合が開裂し、ビオフォアであるベンジル環を含む代謝物の生成であると考えられた。(参照3)

# 2. 植物体内運命試験

[pmb-14C]オリサストロビンを用いて水稲(品種:コシヒカリ)における植物体内運命試験が実施された。試験稲は育苗箱で育て、ワグネルポットに移植したものを用い、育苗箱処理1回、田面水処理を2回及び茎葉散布1回を含む体系処理区(処理区-1)と育苗箱処理のみの区(処理区-2)を設けた。育苗箱処理では1,000 g ai/ha、田面水処理では750 g ai/ha、茎葉散布では300 g ai/ha を処理した。育苗箱処理では、粒剤からの有効成分の溶出を想定して処理液を8回に分けて処理したため育苗箱での処理は1回目のみであり、残り7回は移植後に行った。

処理区-1では、移植1日後、2回の田面水散布25日後(茎葉散布前)及び茎葉散布16日後(収穫期)に、処理区-2では模擬育苗箱処理の最終処理33及び70日後(収穫期)に稲体を採取した。

移植後 27、59 及び 83 日後(最終散布前)に採取した稲体のオートラジオグラフィーの結果から、オリサストロビンは根から吸収され、地上部に容易に移行するが、穂への移行性は茎葉よりも少なかった。処理区-1 では、籾中で 5.23 mg/kg、玄米中で 1.22 mg/kg、わら中で 31.4 mg/kg の残留放射能が検出された。籾中ではオリサストロビンが総残留放射能 (TRR) の 51.7%、F001(オリサストロビンの EZE 異性体)が 17.0%TRR、抽出残渣が 21.0%TRR、玄米中ではオリサストロビンが 35.1%TRR、F001 が 6.3%TRR、抽出残渣が 18.3%TRR、わら中ではオリサストロビンが 42.6%TRR、F001 が 17.2%TRR、抽出残渣が 8.4%TRR、籾及びわら中には、その他の代謝物として F026、F025 及び F027、F028、F029 の E-Z 異性体、

F030 及びその異性体が検出された。処理区・2 では、籾中に 0.163~mg/kg、わら中に 1.21~mg/kg の残留放射能が検出された。籾中では抽出残査が 56.9%TRR で、オリサストロビンが 5.6%TRR、F001 が 2.6%TRR、わら中では抽出残渣が 16.0%TRR で、オリサストロビンが 21.4%TRR、F001 が 11.3%TRR、その他の代謝物として籾中及びわら中に F025、F026 及び F027、F028、F029 の E-Z 異性体、F030 及びその異性体が検出された。

オリサストロビンの主要代謝経路は、①ブチリデン部位のメトキシイミノ基の脱メチル化により、F027 を生成し抱合体を形成するほか、アセトアミド部位の Nメチル基の脱メチル化による F029 の生成及び、続く抱合体の形成②オリサストロビンのアセトアミド部位の Nメチル基の水酸化による F028 の生成、③オリサストロビンの 6-メトキシイミノ基の脱メチル化及び 6-メチル基の水酸化による F026 の生成、④オリサストロビン及びその代謝物の E-Z 異性体の生成と考えられた。

これらの代謝物はさらに代謝され、最終的には蛋白質、炭水化物、セルロース、リグニンなどの天然物に取り込まれると考えられる。(参照 4)

#### 3. 土壌中運命試験

#### (1) 好気的湛水土壌中運命試験①

[phe-<sup>14</sup>C]オリサストロビンまたは[meb-<sup>14</sup>C]オリサストロビンを用いて、シルト質砂土(ドイツ)に乾土あたり 1.5 mg/kg の濃度で水面に添加後、好気的湛水条件下、 $25\pm1^{\circ}$ Cの暗所で 182 日間インキュベーションしてオリサストロビンの土壌中運命試験が実施された。

両標識体の水相の放射能は減少し、182 日後には  $12.3\sim14.6\%$  TAR であった。 182 日後の土壌における抽出可能放射能は  $62.2\sim70.3\%$  TAR、抽出不能放射能は  $10.5\sim11.5\%$  TAR であった。 累積の 14CO<sub>2</sub> は  $3.4\sim7.8\%$  TAR であった。

水相中放射能の大部分がオリサストロビンであり、試験開始時は  $79.3 \sim 85.4\%$  TAR、182 日後には  $10.1 \sim 10.9\%$  TAR であった。放射能は経時的に水相から土壌に移行し、土壌中放射能も大部分がオリサストロビンで、試験開始時に  $6.3 \sim 8.9\%$  TAR、30 日後に最高値で  $58.2 \sim 58.8\%$  TAR、182 日後には  $47.4 \sim 53.7\%$  TAR が検出された。試験時にはオリサストロビンのほか、多くの分解物が検出されたが、いずれも 2.5% TAR 未満であり、多くは  $0.1 \sim 1.0\%$  TAR であった。

オリサストロビンの水中での推定半減期は6日、土壌中では318日、試験系全体で313日と算出された。(参照5)

#### (2) 好気的湛水土壤中運命試験②

[phe-14C]オリサストロビンまたは[meb-14C]オリサストロビンを用いて、軽埴土(埼玉)に乾土あたり 1.5 mg/kg の濃度で田面水に添加後、好気的湛水条件下及び好気条件下、 $25\pm2$ ℃の暗所で 84 日間インキュベーションして、オリサストロビンの土壌中運命試験が実施された。

[phe-14C]オリサストロビンでは、好気的湛水土壌試験系において、土壌中のア

セトン抽出放射能が経時的に減少し、試験終了時には 72.3% TAR、田面水放射能は 16.9%TAR であった。田面水及び土壌中から抽出された放射能の主成分はオリサストロビンであった。[phe-14C]オリサストロビンに特有の分解物として、オリサストロビンの側鎖部位が開裂した F011、F011 が酸化されて生成したアルデヒドが閉環した F032 も同定され、試験終了時には両者合わせて 0.92%TAR であった。好気的土壌試験系ではアセトン抽出放射能は試験終了時に 97.6%TAR、抽出残渣放射能は 6.5%TAR であった。土壌中から抽出された放射能の主成分はオリサストロビンであり、95.5%TAR であった。

 $[meb^{-14}C]$ オリサストロビンでは、好気的湛水土壌試験系において、試験開始にアセトン抽出放射能は 73.0%TAR、田面水放射能は 16.1%TAR、抽出残渣放射能は 8.4%TAR であった。好気的土壌試験系ではアセトン抽出放射能は試験終了時に 6.5%TAR、抽出残渣放射能は 6.6%TAR であった。田面水及び土壌中の放射能パターンは $[phe^{-14}C]$ オリサストロビンと類似しており、抽出された放射能の主要成分はオリサストロビン( $1.2\sim91.3\%$ TAR)であった。

オリサストロビンの、好気的湛水土壌試験系における推定半減期は、294日と 算出された。

オリサストロビンの土壌中での分解経路は、オリサストロビンが側鎖部位で開裂して F011 が生成し、F011 がアルデヒド酸化され、アルデヒドが環状になることで F032 が生成する経路と考えられた。(参照 6)

#### (3) 土壤吸着試験

オリサストロビンの土壌吸着試験が、2 種類の国内土壌 [埴壌土(栃木)、シルト質埴土(宮崎)] 及び 2 種類の米国土壌(埴壌土、シルト質壌土) を用いて実施された。

Freundlich の吸着係数  $K_{ads}$  は  $1.40\sim3.79$ 、有機炭素含有率により補正した吸着係数  $K_{OC}$  は  $17.9\sim146$  であった。(参照 7)

## 4. 水中運命試験

#### (1)加水分解試験

[phe-14C]オリサストロビンを pH4.0 (クエン酸緩衝液)、pH5.0 (酢酸緩衝液)、pH7.0 (リン酸緩衝液)、pH9.0 (ホウ酸緩衝液) の各緩衝液に濃度 5 mg/L になるように加え、 $25\pm1$ ℃で 30 日間インキュベーションし、オリサストロビンの加水分解試験が行われた。

本試験条件下では分解は認められなかった。30 日後に抽出された放射能の主要成分はオリサストロビンであり、95.7~98.0%TARであった。推定半減期は1年以上であり、オリサストロビンは加水分解に対し安定であると考えられた。(参照8)

#### (2) 水中光分解試験

[phe- $^{14}$ C]オリサストロビンをを pH7 の滅菌リン酸緩衝液及び田面水(埼玉、pH7.02、滅菌)に、濃度 5 mg/L になるように加え、 $25\pm1$ °Cで 14 日間キセノン 光照射(光強度:152 W/m²、測定波長: $290\sim800$  nm)し、オリサストロビンの水中光分解試験が行われた。

緩衝液及び田面水において抽出された放射性物質のうち、オリサストロビンは 1 日後に 47.4~52.0%TAR、14 日後に 18.2~21.1%TAR に減少した。分解物は、F001、F033、F049、F011 及び F032 が、緩衝液でそれぞれ最大 26.1%TAR(3 日後)、12.7%TAR(7 日後)、12.4%TAR(7 日後)、5.8%TAR(14 日後)及び 5.77%TAR(14 日後)、田面水でそれぞれ最大 28.3%TAR(3 日後)、10.4%TAR(7 日後)、10.7%TAR(7 日後)、5.6%TAR(14 日後)及び 3.34%TAR(14 日後)検出された。分解物 F001、F033 及び F049 はオリサストロビンの幾何異性体であった。オリサストロビンは二相性を示して減衰し、第 2 相の、緩衝液及び田面水における推定半減期は 1.1 及び 0.8 日であり、太陽光に換算した推定半減期は 2.2 及び 1.7 日と算出された。なお、暗所対照区では緩衝液区及び田面水区ともに 14 日間の試験期間中での分解は認められなかった。

オリサストロビンの水中光分解経路としては、第一段階としてオリサストロビンの幾何異性化が起こり、次に第二段階として、側鎖部位の脱離が徐々に起き、F011 や F032 等多くの光分解物が生成されると考えられた。(参照 9)

#### 5. 土壌残留試験

火山灰・壌土(茨城)、洪積・軽埴土(福島)、沖積・埴壌土(三重)を用いて、オリサストロビン及び分解物 F001 及び F033 を分析対象化合物とした、土壌残留試験(容器内及び圃場)が実施された。その結果は表 2 に示されており、推定半減期は、オリサストロビンが  $51.2\sim249$  日、オリサストロビンと分解物の合量で  $53.1\sim258$  日であった。(参照 10)

| 試験      | 土壌     | オリサストロビン | オリサストロビン |
|---------|--------|----------|----------|
| IF V/9/ |        | AJYAPECJ | 十分解物     |
| 容器内試    | 火山灰・壌土 | 198 日    | 207 日    |
| 験       | 洪積・軽埴土 | 249 日    | 258 日    |
| 圃場試験    | 火山灰・壌土 | 51.2 日   | 53.1 日   |
| 四勿时被    | 沖積・埴壌土 | 58.2 日   | 61.7 日   |

表 2 土壌残留試験成績(推定半減期)

#### 6. 作物等残留試験

#### (1)作物残留試験

水稲(玄米及び稲わら)を用いて、オリサストロビン、代謝物 F001 及び F033

を分析対象化合物とした作物残留試験が実施された。その結果は表 3 に示されている。オリサストロビンの玄米中の最高値は育苗箱に 50 g ai/箱及び本田に 990 g ai/ha で 2 回散布し、最終散布 21 日後に収穫したときの 0.052 mg/kg であったが、31、48 及び 129 日後にはそれぞれ 0.041、0.033 及び 0.024 mg/kg と減衰した。稲わら中の最高値は 1.68 mg/kg であった。代謝物 F001 及び F033 は玄米中では定量限界(0.005 mg/kg)未満か、検出されても少量であった。(参照 12、13)

| 公 下沙龙田路域外                              |          |                       |                                            |                                  |                           |                           |                           |                           |                            |                            |  |
|----------------------------------------|----------|-----------------------|--------------------------------------------|----------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------|----------------------------|--|
| <br>  作物名                              | 試験       | 1 [                   | 回数 (回)                                     | PHI                              | 残留值(mg/kg)                |                           |                           |                           |                            |                            |  |
| 実施年                                    | 圃場数      |                       |                                            | (日)                              | オリサス                      | トロビン                      | Fo                        | 01                        | F0                         | 33                         |  |
| \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | m-/// 9X | (g all lia)           | (12-17                                     | (H)                              | 最高値                       | 平均值                       | 最高値                       | 平均值                       | 最高値                        | 平均值                        |  |
| 玄米<br>2001,                            | 4        | 3.5g ai/箱<br>+990(本田) | $\begin{array}{c} 2 \\ 2 \\ 2 \end{array}$ | $21 \\ 28 \sim 33 \\ 40 \sim 58$ | $0.052 \\ 0.041 \\ 0.033$ | $0.025 \\ 0.026 \\ 0.026$ | $0.007 \\ 0.006 \\ 0.007$ | $0.005 \\ 0.005 \\ 0.005$ | <0.005<br><0.005<br><0.005 | <0.005<br><0.005<br><0.005 |  |
| 2003年                                  | 2        | 3.5g ai/箱<br>+990(本田) | 2                                          | 119~129                          | 0.024                     | 0.014                     | 0.006                     | 0.005                     | < 0.005                    | <0.005                     |  |
| 稲わら<br>2001,                           | 4        | 3.5g ai/箱<br>+990(本田) | $\frac{2}{2}$                              | $21 \\ 28 \sim 33 \\ 40 \sim 58$ | 1.68<br>0.89<br>0.53      | $0.71 \\ 0.49 \\ 0.36$    | $0.24 \\ 0.15 \\ 0.12$    | $0.09 \\ 0.08 \\ 0.07$    | $0.12 \\ 0.05 \\ 0.03$     | $0.04 \\ 0.03 \\ 0.02$     |  |
| 2003年                                  | 2        | 3.5g ai/箱<br>+990(本田) | 2                                          | 119~129                          | 0.25                      | 0.15                      | 0.07                      | 0.04                      | <0.02                      | <0.02                      |  |

表 3 作物残留試験成績

#### (2)魚介類における最大推定残留値

オリサストロビン及び代謝物 F001 の、公共用水域における予測濃度である水産 動植物被害予測濃度(水産 PEC)及び生物濃縮係数(BCF)を基に、魚介類の最 大推定残留値が算出された。

オリサストロビン及び代謝物 F001 の水産 PEC は 1.1  $\mu$ g/L、BCF は 20 (計算値)、魚介類における最大推定残留値は 0.11  $\mu$ g/kg であった。(参照 73)

上記の作物残留試験の分析値及び魚介類における最大推定残留値を用いて、オリサストロビン及び代謝物 F001 を暴露評価対象化合物とした際に、食品中より摂取される推定摂取量が表 4 に示されている。

なお、本推定摂取量の算定は、登録に基づく使用方法からオリサストロビンが 最大の残留を示す使用条件で国内に登録のある全ての適用作物に使用され、かつ、 魚介類への残留が上記の最大推定残留値を示し、加工・調理による残留農薬の増 減が全くないとの仮定の下に行った。

注) ai:有効成分量、PHI:最終使用-収穫間隔日数

<sup>·</sup>一部に定量限界未満 (<0.005 及び<0.02) を含むデータの平均値は 0.005 及び 0.02 として計算した。

<sup>・</sup>全試験に粒剤を用いた。

<sup>・</sup>代謝物の残留値は親化合物に換算した値を記載した。

表 4 食品中より摂取されるオリサストロビンの推定摂取量

|           |                |               |                 |               |                 |               |                 | <del></del>     |                 |
|-----------|----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|-----------------|-----------------|
| 作物名       | 残留值<br>(mg/kg) | N             |                 | 小児<br>(1~6 歳) |                 | 妊婦            |                 | 高齢者<br>(65 歳以上) |                 |
| 11 123 14 |                | ff<br>(g/人/日) | 摂取量<br>(μg/人/日) | ff<br>(g/人/日) | 摂取量<br>(μg/人/日) | ff<br>(g/人/日) | 摂取量<br>(μg/人/日) | ff<br>(g/人/日)   | 摂取量<br>(μg/人/日) |
| 米         | 0.031          | 185.1         | 5.7             | 97.7          | 3.0             | 139.7         | 4.3             | 188.8           | 5.9             |
| 魚介類       | 0.11           | 94.1          | 10.4            | 42.8          | 4.71            | 94.1          | 10.4            | 94.1            | 10.4            |
| 合計        |                |               | 16.1            |               | 7.71            |               | 14.7            |                 | 16.3            |

- 注)・米の残留値は、予想される使用時期・使用回数のうちオリサストロビン及び代謝物 F001 の合計 が最大を示す試験区の平均値を用いた (参照表3)。
  - ・「ff」: 平成 10 年~12 年の国民栄養調査 (参照 67~69) の結果に基づく農産物摂取量 (g/人/口)
  - ・「摂取量」: 残留値及び農産物摂取量から求めたオリサストロビンの推定摂取量 (µg/人/日)

#### 7. 乳汁移行試験

ホルスタイン種泌乳牛(2 頭)を用いて、オリサストロビン(3.56 mg/頭/日)、代謝物 F001(0.52 mg/頭/日)及び F033(0.16 mg/頭/日)の 7 日間連続経口投与による乳汁移行試験が実施された。なお、オリサストロビンの乳牛への投与量は、稲わらにオリサストロビン、2 種類の代謝物 F001 及び F033 の最大残留濃度 0.89、0.04及び 0.14 mg/kg の 2 倍量が残留し、乳牛に稲わら 2kg/日が与えられるとして計算された。

投与開始 1 日後から最終投与 5 日後まで、乳汁中のオリサストロビン、代謝物 F001 及び F033 は定量限界未満であった。 (参照 11)

#### 8. 一般薬理試験

マウス及びラットを用いた一般薬理試験が実施された。各試験の結果は表 5 に示されている。(参照 14)

表 5 一般薬理試験概要

| 試験の種類 |          | 動物種        | 動物数/群 | 投与量<br>(mg/kg体重)<br>(投与経路)          | 無作用量<br>(mg/kg 体重) | 作用量<br>(mg/kg 体重) | 結果の概要                                                                           |
|-------|----------|------------|-------|-------------------------------------|--------------------|-------------------|---------------------------------------------------------------------------------|
| 中枢神   | 一般状態     | ICR<br>マウス | 雌雄 3  | 0、128、<br>320、800、<br>2,000<br>(経口) | 800                | 2,000             | 2,000 mg/kg 体重投与<br>群の雌雄に呼吸数の減<br>少、雄に自発運動の低下、<br>よろめき歩調がみられ、<br>雄マウス1例が死亡。     |
| 枢神経系  | 州文 4人 担条 | SD<br>ラット  | 雄 5   | 0、320、<br>800、2,000<br>(経口)         | 320                | 800               | 800 mg/kg 体重以上投与<br>群で下痢がみられた。<br>2,000 mg/kg 体重投与<br>群では体重増加抑制がみ<br>られ、2 例が死亡。 |

|       | ヘキソハ゛ルヒ゛<br>タール睡眠 | ICR<br>マウス | 雄 8 | 0、51.2、<br>128、320、<br>800、2,000<br>(経口)          | 51.2  | 128   | 睡眠時間延長がみられた。2000mg/kg 体重投与<br>群で1例死亡。                                                                 |
|-------|-------------------|------------|-----|---------------------------------------------------|-------|-------|-------------------------------------------------------------------------------------------------------|
|       | 体温                | SD<br>ラット  | 雄 5 | 0、320、<br>800、2,000<br>(経口)                       | 800   | 2,000 | 投与6時間後に体温低下がみられた。                                                                                     |
| 循環器系  | 血圧、心拍数            | SD<br>ラット  | 雄 5 | 0、320、<br>800、2,000<br>(経口)                       | 800   | 2,000 | 影響なし。<br>2,000 mg/kg 体重投与<br>群で1例死亡。                                                                  |
| 自律神経系 | 瞳孔径               | SD<br>ラット  | 雄 5 | 0、320、800、<br>2,000<br>(経口)                       | 2,000 | -     | 影響なし。                                                                                                 |
| 消化器   | 炭末輸送<br>能         | ICR<br>マウス | 雄 8 | 0、20.5、<br>51.2、128、<br>320、800、<br>2,000<br>(経口) | 800   | 2,000 | 影響なし。<br>2,000 mg/kg 体重投与<br>群で炭末投与前に 3 例死<br>亡。                                                      |
| 骨格筋   | 握力                | SD<br>ラット  | 雄 5 | 0、320、800、<br>2,000<br>(経口)                       | 2,000 | -     | 影響なし。                                                                                                 |
| 腎機能   | 腎機能               | SD<br>ラット  | 雄 5 | 0、128、<br>320、800、<br>2,000<br>(経口)               | 128   | 320   | 320 mg/kg 体重以上投<br>与群で尿量減少、それに<br>起因すると考えられる尿<br>中 Na、Cl 排泄量の減少。<br>2,000 mg/kg 体重投与<br>群で採尿中に 4 例死亡。 |

<sup>・</sup>検体は、1%Tween80水溶液に懸濁して用いた

# 9. 急性毒性試験

オリサストロビン原体、代謝物 F001、F033 及び F049 を用いた急性毒性試験が実施された。結果は表 6 に示されている。(参照  $15\sim20$ ))

表 6 急性毒性試験概要 (原体、代謝物)

| ·<br>被験物質            | 投与経路     | 動物種             | LD <sub>50</sub> (mg/ | /kg 体重) | 観察された症状                                                                                                |  |
|----------------------|----------|-----------------|-----------------------|---------|--------------------------------------------------------------------------------------------------------|--|
| 次收分页                 | 1久 了 庄 田 | 到10/1里          | 雄                     | 雌       |                                                                                                        |  |
| オリサス<br>トロビン<br>(原体) | 経口       | SD ラット<br>雌 5 匹 |                       | 356     | 腹別位、横別位、円背位、うずくまり、昏迷、昏睡、鎮静、自発運動低下、よろめき歩行、痙攣、呼吸緩徐、体温低下、軟便、口周囲暗等被毛の汚れ、外陰部等被毛湿潤、死亡例で肺赤色化、肺水腫、腺胃部及び小腸の赤色化等 |  |

|      | 経皮 | Wistar ラット<br>雌雄各 5 匹    | >2,000             | >2,000                                                                                                                                                                                                                            | 塗布部でに紅斑、軽度の浮腫<br>死亡例なし |  |  |  |
|------|----|--------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|--|
|      |    | SD ラット                   | LC <sub>50</sub> ( | mg/L)                                                                                                                                                                                                                             | 呼吸数の増加または減少、眼瞼閉        |  |  |  |
|      | 吸入 | SD ノット  <br>  雌雄各5匹      | 4.12               | 1.04                                                                                                                                                                                                                              | 鎖、逃避づ動、うずくまり、立毛        |  |  |  |
|      |    | POETAE II O E            | 4.12               | 死亡例なし       mg/L)     呼吸数の増加または減少、眼瞼閉<br>鎖、逃避づ動、うずくまり、立毛<br>死亡例で肺び慢伸音赤色化       と800     円背位、鎮静、自発運動低下、<br>軟便等<br>死亡例なし       内背位、鎮静、自発運動低下、<br>中背位、鎮静、自発運動低下、       本のの     軟便等       水亡例なし     中背位、鎮静、自発運動低下、       大きのの     軟便等 |                        |  |  |  |
| 代謝物  | 経口 | SD ラット<br>雌雄各 <b>5</b> 匹 | >800               |                                                                                                                                                                                                                                   | 円背位、鎮静、自発運動低下、         |  |  |  |
| F001 |    |                          |                    | >800                                                                                                                                                                                                                              | 軟便等                    |  |  |  |
| F001 |    |                          |                    |                                                                                                                                                                                                                                   | 死亡例なし                  |  |  |  |
| 代謝物  |    | SD ラット                   |                    |                                                                                                                                                                                                                                   | 円背位、鎮静、自発運動低下、         |  |  |  |
|      | 経口 |                          | >800               | >800                                                                                                                                                                                                                              | 軟便等                    |  |  |  |
| F033 |    | 雌雄各5匹                    |                    |                                                                                                                                                                                                                                   | 死亡例なし                  |  |  |  |
| 代謝物  | 経口 | SD ラット                   | . 000              | > 000                                                                                                                                                                                                                             | 軟便                     |  |  |  |
| F049 |    | 雌雄各5匹                    | >800               | >800                                                                                                                                                                                                                              | 死亡例なし                  |  |  |  |

#### 10. 眼・皮膚に対する刺激性及び皮膚感作性試験

NZW ウサギを用いた眼刺激性試験及び皮膚刺激性試験が実施された。眼及び皮膚に対する刺激性は認められなかった。(参照 21~22)

Hartley モルモットを用いた皮膚感作性試験 (Maximization 法) が実施された。皮膚感作性は認められなかった。(参照 23)

## 11. 亜急性毒性試験

#### (1)90日間亜急性毒性試験(ラット)

Wistar ラット (一群雌雄各 10 匹) を用いた混餌 (原体: 0、300、1000、3000 及び5000 (雌のみ) ppm: 平均検体摂取量は表7参照) 投与による90日間亜急 性毒性試験が実施された。

表 7 90 日間亜急性毒性試験 (ラット) の平均検体摂取量

| 投与群          |   | 300 ppm | 1,000 ppm | 3,000 ppm | 5,000 ppm |
|--------------|---|---------|-----------|-----------|-----------|
| 平均検体摂取量      | 雄 | 22      | 73        | 215       |           |
| (mg/kg 体重/日) | 雌 | 25      | 81        | 234       | 385       |

5,000 ppm 投与群の雌で体重増加抑制、小赤血球数の増加、血清中マグネシウム量の増加、副腎の比重量<sup>1</sup>減少、十二指腸壁肥厚、肝臓の変色(暗褐色)、腎臓の褐色色素沈着が、3,000 ppm 以上投与群の雌雄で Alb 増加が、同群雄で Glu減少、脾比重量減少、腎、精巣及び心比重量増加、小葉中心性肝細胞肥大、腎臓の褐色色素沈着及び好酸性小滴が、同群雌で摂餌量減少、Hb、MCHC減少、PT短縮、血清中塩素減少、GGT 及びカルシウム増加が、1,000 ppm 以上投与群の雄で体重増加抑制傾向、摂餌量減少が、同群雌で MCV、MCH 減少、TP、T.Chol

<sup>1</sup> 体重比重量を比重量という(以下同じ)

増加、肝比重量増加、びまん性肝細胞肥大が、300 ppm 以上投与群の雌雄で十二 指腸の粘膜肥厚(300ppm では有意差はないが、用量相関性がうかがえる所見)が、同群雌で Glob の増加が認められた。

本試験において、300 ppm 以上投与群雌雄で十二指腸の粘膜肥厚等が認められたので、無毒性量は300 ppm 未満であると考えられた。(参照24)

# (2)90日間亜急性毒性試験(追加試験:ラット)

Wistar ラット (一群雌雄各 10 匹) を用いた混餌 (原体:0、30 及び 100 ppm: 平均検体摂取量は表 8 参照) 投与による 90 日間亜急性毒性試験 (追加試験) が実施された。

表 8 90 日間亜急性毒性試験(追加試験:ラット)の平均検体摂取量

| 投与群          |   | 30 ppm | 100 ppm |
|--------------|---|--------|---------|
| 平均検体摂取量      | 雄 | 2.0    | 6.8     |
| (mg/kg 体重/日) | 雌 | 2.4    | 8.3     |

オリサストロビン投与による影響は認められなかった。

本試験における無毒性量は、雌雄とも  $100 \, \mathrm{ppm}$ (雄:  $6.8 \, \mathrm{mg/kg}$  体重/日、雌:  $8.3 \, \mathrm{mg/kg}$  体重/日)であると考えられた。(参照 25)

#### (3)90 日間亜急性毒性試験(イヌ)

ビーグル犬 (一群雌雄各 5 匹) を用いた混餌 (原体:0、100、500 及び1,500 ppm: 平均検体摂取量は表 9 参照) 投与による 90 日間亜急性毒性試験が実施された。

表 9 90 日間亜急性毒性試験 (イヌ)の平均検体摂取量

| 投与群          |   | 100 ppm | 500 ppm | 1,500 ppm |
|--------------|---|---------|---------|-----------|
| 平均検体摂取量      | 雄 | 5.6     | 27.5    | 82.8      |
| (mg/kg 体重/日) | 雌 | 6.8     | 35.6    | 107       |

1,500 ppm 投与群の雌雄で血清中クロールの増加が、雄で血清中のALP増加、カルシウム、TP、Alb、Glob、T.Chol 減少が、雌で体重増加抑制、摂餌量及び食餌効率の低下、APTT 短縮、Glu 及び Cre 減少、腎及び甲状腺比重量の増加が認められた。病理組織学的検査では投与の影響と考えられる所見は認められなかった。

本試験において 1,500 ppm 投与群の雄で血清中の ALP 増加等、雌で腎及び甲状腺比重量の増加等が認められたことから、無毒性量は雌雄とも 500 ppm (雄: 27.5 mg/kg 体重/日、雌: 35.6 mg/kg 体重/日) であると考えられた。(参照 26)

#### (4) 28 日間亜急性神経毒性試験 (ラット)

Wistar ラット (一群雌雄各 10 匹) を用いた混餌 (原体:0、300、1,000 及び 3,000 ppm: 平均検体摂取量は表 10 参照) 投与による 28 日間亜急性神経毒性試験が実施された。

表 10 28 日間亜急性神経毒性試験 (ラット) の平均検体摂取量

| 投与群          |   | 300 ppm | 1,000 ppm | 3,000 ppm |
|--------------|---|---------|-----------|-----------|
| 検体摂取量        | 雄 | 27.2    | 89.1      | 252.7     |
| (mg/kg 体重/日) | 雌 | 30.2    | 98.0      | 264.0     |

3,000 ppm 投与群の雌雄で摂餌量減少、体重増加抑制が認められた。300 ppm 及び 1,000 ppm 投与群の雌で立ち上がり回数の減少が認められたが、用量相関性に欠けることからこれらの所見は偶発的なものであり、投与による影響ではないと考えられた。

本試験において、3,000 ppm 投与群の雌雄で摂餌量減少、体重増加抑制が認められたので、無毒性量は雌雄とも 1,000 ppm (雄:89.1 mg/kg 体重/日、雌:98.0 mg/kg 体重/日) であると考えられた。神経毒性は認められなかった。(参照 27)

# 12. 慢性毒性試験及び発がん性試験

#### (1) 1年間慢性毒性試験(イヌ)

ビーグル犬 (一群雌雄 5 匹) を用いた混餌 [原体:0、100、400 及び 1,500 (雌のみ)、1,600(雄のみ)ppm: 平均検体摂取量は表 11 参照] 投与による 1 年間慢性毒性試験が実施された。

表 11 1年間慢性毒性試験(イヌ)の平均検体摂取量

| 投与群          |   | 100 ppm | 400 ppm | 1,500 ppm | 1,600 ppm |
|--------------|---|---------|---------|-----------|-----------|
| 平均検体摂取量      | 雄 | 2.6     | 10.8    |           | 44.3      |
| (mg/kg 体重/日) | 雌 | 2.8     | 11.1    | 40.9      |           |

高用量群 (1,500 ppm/1,600 ppm) の雌雄で嘔吐、体重増加抑制 (有意差なし)、 摂餌量減少、血清中カリウムの増加、肝比重量の増加傾向が、雄で TP、カルシウム及び Alb 減少、甲状腺比重量の増加が認められた。雌あるいは雄で RBC、 Hb、MCHC の増加が認められた投与群もあったが、対照群の変動の範囲内であること、一過性の変化であること、用量相関性を欠いていることなどから、投与による影響とは考えられなかった。

病理学的検査では、投与の影響と考えられる所見は認められなかった。

本試験において、1,500 ppm/1,600 ppm の雌雄で肝比重量の増加傾向、甲状腺 比重量の増加等が認められたので、無毒性量は、雌雄とも 400 ppm (雄:10.8 mg/kg 体重/日、雌:11.1 mg/kg 体重/日) であると考えられた。(参照 28)

# (2) 2年間慢性毒性/発がん性併合試験 (ラット)

Wistar ラット (一群雌雄各 50 匹) を用いた混餌 (原体:0、100、500 及び 2,500ppm $^2$ : 平均検体摂取量は表 12 参照) 投与による 2 年間慢性毒性/発がん性併合試験が実施された。

表 12 2 年間慢性毒性/発がん性併合試験(ラット)の平均検体摂取量

| 投与群          |   | 100 ppm | 500 ppm | 2,500 ppm |
|--------------|---|---------|---------|-----------|
| 平均検体摂取量      | 雄 | 5.2     | 26.3    | 133       |
| (mg/kg 体重/日) | 雌 | 6.8     | 34.3    | 163       |

各投与群で認められた毒性所見(非腫瘍性病変)は表 13 に、十二指腸及び甲 状腺の非腫瘍/腫瘍性病変の発生頻度は表 14 に示されている。

腫瘍性病変以外では、体重増加抑制、十二指腸粘膜上皮肥厚等の所見が認められた。腫瘍性病変としては、2,500 ppm 投与群の雄で十二指腸腺癌(有意差なし)、甲状腺ろ胞細胞腺腫が、2,500 ppm 投与群の雌で十二指腸腺腫(有意差なし)が認められた。

本試験において 500 ppm 投与群の雌雄で十二指腸粘膜上皮肥厚、雄で肝変異細胞巣、甲状腺腫大が、雌で GGT の増加等が認められたので、無毒性量は、雌雄とも 100 ppm(雄: 5.2 mg/kg 体重/日、雌 6.8 mg/kg 体重/日)であると考えられた。(参照 29、57、58、60、61)

表 13~2 年間慢性毒性/発がん性併合試験(ラット)で認められた毒性所見(非暉悳性病変)

| 投与群                  | 所 見               |                    |  |  |
|----------------------|-------------------|--------------------|--|--|
| [X 子和子               | 雄                 | 雌                  |  |  |
| $2,500~\mathrm{ppm}$ | ・摂餌量減少            | ・体重増加抑制、摂餌量減少      |  |  |
|                      | ・RBC、MCH、TG 減少    | ・RBC、MCH、Hb、Ht 及び  |  |  |
|                      | ・血清中カルシウム、Alb、GGT | MCHC 減少            |  |  |
|                      | 増加                | ・血中カルシウム、Alb、TP、   |  |  |
|                      | ・PT の短縮           | T.Chol 及びマグネシウム増加、 |  |  |
|                      | ・尿沈渣中移行上皮細胞数及び赤   | ・PT 短縮             |  |  |
|                      | 血球増加              | ・尿タンパク増加           |  |  |
|                      | ・脳及び精巣比重量増加       | ・脳、肝及び腎比重量増加       |  |  |
|                      | ・十二指腸粘膜上皮肥厚、肝変異   | ・十二指腸粘膜上皮肥厚、リンパ    |  |  |
|                      | 細胞巣、胸腺髄質のう胞       | 球過形成、下垂体前葉過形成、     |  |  |
|                      |                   | 慢性腎症、腎盂腎炎、         |  |  |

 $<sup>^2</sup>$  : 5,000 ppm (雌雄) 及び 7,500 ppm(雌のみ)の投与量でも試験が実施されたが、最大耐量を超えたため 7,500 ppm 投与群は 16 日目、5,000 ppm 投与群雄は 94 日目、雌は 384 日目に全てと殺処分された。