平成20年度第6回薬事·食品衛生審議会薬事分科会化学物質安全対策部会化学物質調査会 化学物質審議会第79回審査部会

第82回中央環境審議会環境保健部会化学物質審査小委員会

【第一部】

議事次第

日 時 平成20年10月24日(金)13:00~15:30

経済産業省 別館10階 各省庁共用1028号会議室 場所

議題

- 1. 前回審議結果の確認
- 2. 既存化学物質の審議等について
 - (1) 分解性・蓄積性について
 - (2) 難分解性・高濃縮性判定済みの既存化学物質について
 - (3) 人健康影響・生態影響について
- 3. その他

[配付資料]

資料1-1 資料1-2 資料1-3 資料1-4	前回既存化学物質点検(分解・蓄積)結果資料 前回難分解性・高濃縮性判定済みの既存化学物質の毒性評価結果 前回既存化学物質審査シート(生態影響) 前回議事録
資料2-1	既存化学物質点検(分解・蓄積)結果資料
資料2-2	第一種特定化学物質へ該当するか否かの審議審査シート(人健康影響)
資料2-3	既存化学物質の人健康影響に関する情報(第一種特定化学物質審議関係)
資料2-4	既存化学物質審査シート(人健康影響・生態影響)
資料2-5	既存化学物質の人健康影響に関する情報(第二種監視化学物質審議関係)
資料2-6	既存化学物質の生態影響に関する情報
参考1	委員名簿
参考2-1	監視化学物質への該当性の判定等に係る試験方法及び判定基準
参考2-2	水溶性ポリマーの生態毒性について
参考3	既存の第一種特定化学物質に関する毒性評価一覧
参考4	特定化学物質及び監視化学物質の要件及び評価のための試験項目について
参考5	既存化学物質審査物質(人健康影響・生態影響)に係る分解性・蓄積性データ

平成20年7月 既存化学物質点検(分解・蓄積)結果資料 〈第77回審査部会〉

K番号	物質名 (CAS No.) [PRTR番号] 官報公示整理番号	分解度(%)	分配係数 (log Pow)	濃縮倍率	判定結果 ()内は既判定	後続の試験案 (試験の種類, 試験物質)	頁
1825	ジナトリウム=2-(6-オキシド-3-オキソ-3 <i>H</i> -キサンテン-9-イル)-ベンゾアート(518-47-8)5-673 5-1416	BOD: -2, 0, 1 (0)*1 TOC: 0, 1, 1 (0) HPLC: 1, 1, 1 (1)	有機物質の塩 であるため測 定不可 -0.67 ^{*2}	1区:0.27倍以下 2区:2.7倍以下 脂質含有率 開始前 2.94% 終了後 4.14%	難分解性 高濃縮性では ない	なし	1
1827	[(2-メチルフェノキシ) メチル] オキシラン (2210-79-9) 3-0574 O-CH ₂ -CH-CH ₂	BOD: -3, -3, -2 (0)*1 TOC: 2, 3, 1 (2) HPLC: 91, 91, 90 (90) 被験物質の大部分が加水分解 して、3-(2-メチルフェノキ シ)-1, 2-プロパンジオールを 生成し、残留した。	2. 28 (フラスコ振 とう法) 2. 16 ^{‡2}	分配係数から類推	難分解性 高濃縮性では ない	なし	4
1828	1 H-インデン (95-13-6) 4-0580	BOD: -6, -6, -4 (0) *1 HPLC: 0, 1, 1 (1)	3. 02 (フラスコ振 とう法) 3. 25* ²	分配係数から類推	難分解性 高濃縮性では ない	なし	7
143B	4-アミノ-2-クロロトルエン-5-スルホン酸ナトリウム (6627-59-4) 3-2024	審議済(難分解性) (平成19年10月26日) BOD: 0, 0, 2 (1) HPLC: -2, -1, -1 (0)	_	1区: <3倍 2区: <24倍 脂質含有率 開始前 8.2% 終了後 7.0%	(難分解性) 高濃縮性では ない	なし	10
1201C	CI	審議済(難分解性) (平成19年10月26日) BOD: 0, 0 (0) GC: -2, -5 (0) Closed bottle法	3. 83*2	1区:1190倍 2区:1160倍 脂質含有率 開始前 5.6% 終了後 6.0%	(難分解性) 高濃縮性では ない	なし	12
1201D	3, 4-ジクロロトルエン (95-75-0) 3-0078 CI CH ₃	審議済(難分解性) (平成19年10月26日) BOD: 0, 0 (0) GC: -3, 1 (1) Closed bottle法	3. 83*2	1区:1100倍 2区: 866倍 脂質含有率 開始前 6.1% 終了後 6.6%	(難分解性) 高濃縮性では ない	なし	15

K番号	物質名 (CAS No.) [PRTR番号] 官報公示整理番号	分解度(%)	分配係数 (log Pow)	濃縮倍率	判定結果 ()内は既判定	後続の試験案 (試験の種類, 試験物質)	頁
	2, 6-ジ-tert-ブチルー4-sec-ブチルフェノール (17540-75-9) 3-0540 OH CH ₃ H ₃ C-C-C-CH ₃ CH ₃ CH ₂ CH ₃	審議済(難分解性) (平成18年7月21日) BOD: -1, -1, -1 (0)*1 HPLC: 3, 2, 1 (2) 被験物質の一部が試験液から 炭酸ガス吸収剤に移行した。	6.43*2	1区: 32000倍 2区: 33000倍 脂質含有率 開始前 4.16% 終了後 5.34%	(難分解性) 高濃縮性	なし	18

- *1 分解度の平均値が負の値に算出されたため、0と表記した。
- *2 Kowwin v1.67 SRC-LOGKOW for Microsoft Windowsによる計算値
 *3 フラスコ振とう法による予備値

整理番号 K-1825	(5-673, 5-1416)		分 解	度	試 験			分解	皮	试 験			分	解	度	試 験	:
ジナトリウム=2-(6-オキシド-3-オ ゾアート [別名 アシッド エロー	キソ-3#キサンテン-9-イル)-ベン	事業	対象年度	平	成19年度	契	約		年	月日	契	á	約		年	月	日
(518-47-8)	-(3)	試験	期間 1	9. 10.	3~20. 2. 1	試馴	検期間]	, ,	~	試	験期	間			~ .	
構造式(示性式)・物理化学的性料	t · .	試験	装置	標	· 揮	試	倹装置	1	標	・ ^揮	試	検装	置		楞	•	撣
	{		試影	i ii	度		ş,	式 験	法	度			試	駿	ŧ	潍	隻
	ONa		被験物質	1	00 mg/L		ŧ	皮験物質		mg/L			被影	食物質	ţ	mg/	'L
			汚 浙	3	30 mg/L		ř	5 泥	!	mg/L			汚	泥	<u> </u>	Og/	/L
Nag		本記	は験期間		4 週間	本	試験	期間		週間	本	試	鈴期	間			週間
NaO	0 0		間 BOD	-2,	0, 1 (0) %		間					間	· 1				
分子式 C20H10Na2O5	分子量 376.27	矾	接			試	接				試		ŧ				
純 度*1 92.1%	外 観 橙色粉末	験結	TOC	0,	1, 1 (0) %	験結					験結	į .					
不純物*1 (物質名, 含有率)	溶解度(対水,その他)	果	直 HPLC	1,	1, 1 (1) %	果	直接			•	果		1				
残り 7.9%は不明	対水 300g/L 以上 (20℃) (フラスコ法)		15) X]	"	` [
•	対メタノール 10g/L 以上	審查	全部全	第二	77回	審	査部	슾	第	回	審	查	部会		第	<u></u>	
融 点 測定不可 融 点 (黒色に変化)	1ーオクタノール/水分配係数 有機物質の塩であるため]	20年	7月2	25日開催			年	月	日開催				年	月	日	開催
沸点 (黒色に変化)	測定不可	判	定			判	定	-			_L	(- 5					
蒸気圧 3. 18×10 ⁻⁵ Pa 以下 (気体流動法, 80℃)	加水分解性 pH4.7.9 加水分解性なし	1	考			備	考	•			撒	*	考				
密 度	pile, 1, 9 ががり MF注なし	1	可収率 水 +被験	物質)	系 98.4%												
LD50	解離定数	(7	5泥+被験	物質)	系 99.0%												
IRチャートの有無 宿・無	有機物質の塩であるため 測定不可		実施機関	人名纳格	## ### 4## ### ### ###												
用途				L-子-物質	質評価研究機構												
生産量*2(16年) 未公表			寺記事項 分解度の平	均値が	が負の値に算出								-				
試 料 購入先 東京化成工業] }	されたため	、0と	表記した。												
経済産業公報発表年月日	年 月 日	1			6												

淵	縮度試験	· .	事業	対象年度	平成	19年度		濃	縮度試験												毒	性	試	験
牐	験期間		19	. 10.	1 ~	20.	2. 7	試	験期間		•		~	•		•		•			依	年	月	日
試	験装置	標・揮	LC50 1	直 >200 л	ng/L (96h)	r) 魚種 (ヒメダカ)	試	験装置 ᄸ	・揖	LC50 fi	i n	g/L(hi)魚種	()			•		1.1			
水	槽設定獥	度(四	g/L)	•	•			水	楷設定濃度	€ ()	•									頼			
				•	分散	剤							分散	剤			•			•	経過			
		被堕	物質				$\overline{}$			被	験物質										程垣			
第	1 濃度区	0.	46			\nearrow	·	第	1 濃度区											•				
第	2 濃度区	0.	046					第	2 濃度区					-										
第	3 濃度区				-			第	3 濃度区														,	
灋	縮倍率	: 	 脂質含 ²	有率 開始	前 2.94	% % 魚種	(コイ)	灋	縮倍率		脂質含	軍 開始	前经	% % % %	重()								
			6 日後				28 日後	-			日後	かぞり	日後	日 日 1		日後					1			
	水槽濃度(ng/L)	0. 462	0. 459	0. 459	0. 460	0.462		水槽濃度()			•	***										
第 1	倍	率	≤ 0. 27					男	倍	率											1			
Н		· · · /T \	≤ 0. 27	+		≤0. 27					1				+									
第	水槽濃度(mg/L)	0. 0459	+	0. 0461 ≤2. 7	0. 0457		第	水槽濃度(+									
第 2	倍	率	≤2. 7 ≤2. 7	≦2.7 ≤2.7	≤2. 7	≤2.7 ≤2.7	= 4. 1	2	倍	率		-			+									
Н	水槽濃度()	⊋ 4. 1	≥4.1	≥4.1	≥6.1	≥ 4. 1		水槽濃度(•		\dashv									
第 3								第 3			 				1									
3	倍	率						Ů	倍	率 														,
審	查部会	第 7	7 回	20年	7月	25日	開催	審	查部会	第	回	年	月	· 日	開	催								
判	定結果	•					- "	判	定結果															
1	備 考							備	考								1							
	[ばく露期間・	中における	濃縮倍率]		区 0.27									-						•				
					区 2.7	倍以下					•	•	**											
	[回 収 率] 試験水*				「限濃度」 〈 第1濃度	ERT 11	σ/ĭ				•		•											
	叫欢小	100.00		此权小		区 1.1																		
	供試魚	93. 8%		供試魚			ng/g		•			ā												
	実施機関]	財団法	长人 化学	参数評価	研究機構	<u> </u>			•															

※試験液を直接分析機器に導入。

K-1825の類似物質表

化 合 物 名 (CAS 番号)	構造式	官報公示 整理番号 (K-番号)	分 解 度 (%)	分解 判定 (年)	分配係数 (log Pow)	LC50 mg/L (ヒメダカ)	濃 縮 倍 率	機縮 判定 (年)
3, 3ービス(pージメチル アミノフェニル)ー6ージ メチルアミノフタリド (1552-42-7)	H ₃ C N CH ₃	5-0129 (K-1338)	標準(4W) 1997年実施 BOD 0, 0, 0 (0) HPLC 0, 4, 0 (1)	與分解性 (1997)	1999 年実施 5.27 (フラスコ振とう説	>80. 0 (48hr)	1999 年実施 1 区(50μg/L): 500~1300 2 区(5μg/L): 636~1670 脂質含有率 4.1%	高渡宿性 ではない (1999)
2-(3-ジェチルイミニ オー6-ジェチルアミノー 3 H-キサンテンー9ーイ ル)安息香酸=クロリド (3375-25-5)	(CH ₂ CH ₂) ₂ N Ci	5-1973 5-4056 (K-847)	標準(4W) 1987年実施 BOD 0, 0, 0 (0) TOC 3, 2, 0 (2) VIS(555nm) 8, 8, 5 (7)		1987 年実施 1.9~2.0	33. 9 (48hr)	1987 年実施 1 区(100μg/L): <0.2 2 区(10μg/L): <1.7 脂質含有率 3.9%	高濃縮性 ではない (1987)
3', 6'-ビス(ジエチル アミノ)-スピロ[イソ ベンソフラン-1(3 H), 9'-[9 H]キサンテン]- 3-オン (509-34-2)	H ₃ CH ₃ C N CH ₃ CH ₃	5-3090 . (K-1762)	標準(4W) 2005年実施 BOD -3, -2, -2 (0)*1 TOC 2, 0, 3 (1) HPLC 1, 1, 1 (1)	與公分外性 (2006)	6. 63*²			
ジナトリウム= 2 - (6 - オキシド-3 - オキソー3 H-キサンテン-9 - イル)-ベンソアート (518-47-8)	NaO ONe	5-1416 (K-1825)	標準(4W) 2008年実施 BOD -2, 0, 1 (0)*1 TOC 0, 1, 1 (1) HPLC 1, 1, 1 (1)		測定不可	>200 (96hr)	2008 年実施 定常状態における凝縮倍率 1 区 (0.46 mg/L): ≦0.27 2 区 (0.046mg/L): ≦2.7 脂質含有率 開始前 2.94% 終了後 4.14%	
3-(N-シクロヘキシ ル-N-メチルアミノ)- 6-メチル-7-アニリ ノフルオラン (55250-84-5)	H ₂ C ₁ N C ₁ H ₃	5-3631 (K-1655)	標準(4W) 2003年実施 BOD -8, -6, -3 (0)*1 HPLC 0, 0, 0 (0)	斯约角和 (2003)		>15.0 (96hr)	2005 年実施 定常状態における機縮倍率 1 区(10μg/L): 2400 2 区(1μg/L): 2500 脂質含有率 開始前 2.58% 終了後 3.80%	高濃箱性 ではない (2005)

^{*1} 分解度の平均値が負の値に算出されたため、0と表記した。

^{*2} Kowwin v 1:67による計算値。

整理番号 K-1827	(3-0574)	分解度試験	分解度試験	分解度試験
[(2-メチルフェノキシ)メチル]オ=	キシラン	事業対象年度 平成19年度	契約 年月日	契約 年月日
(2210-79-9)		試験期間 19.11. 7~20. 3. 6.	試験期間 ~	試験期間 ~
		試験装置(標)・揮	試験装置 標 · 揮	試験装置 標 · 揮
構造式(示性式)・物理化学的性料	,	試験濃度	試験 濃度	試験濃度
	•	被験物質 100 mg/L	被験物質 mg/L	被験物質 mg/L
	· · · · · · · · · · · · · · · · · · ·	汚 泥 30 mg/L	汚 泥 mg/L	汚 泥 mg/L
1	CH ₂ -CH-CH ₂	本試験期間 4 週間	本試験期間 週間	本試験期間 週間
CH ₃		間 BOD -3, -3, -2 (0)%	間	間
分子式 C10 H12 O2	分子量 164.20	試接	試 接	試
純 度*1 92.4%	外 観 無色透明液体	験 括 TOC 2, 3, 1 (2)%	験	験
不純物*1(物質名,含有率)	溶解度(対水、その他)	中	果接	展 接
残り7.6%は不明	対水 785mg/L(20℃) 対アセトニトリル 10g/L以上	16	150	1X
		審査部会 第 7 7 回	審査部会 第 回	審査部会 第 回
融点 測定不可(融点は-100~ 25°Cに存在しない)	1-オクタノール/水分配係数 log Pow = 2.28	20年 7月25日開催	年 月 日開催	年 月 日開催
沸 点 測定不可 (210℃以上で変化)	(フラスコ振とう法)	判 定	判定	判 定
蒸気圧 8. 15×10 ⁻¹ Pa (20℃)	加水分解性	備考		ノ、被験物質の残留率は 9~10%で、
密度		1. 回収率 [*] (水 +被験物質)系 100%	1.41*3)が生成し、(汚泥+被験!	プロパンジオール(局方, log Kow = 物質)系で78~82%残留した。(汚
LD50	解離定数	(汚泥+被験物質)系 100%		D変化物 A が 2%生成し、残留した。 保持時間は被験物質、変化物 A 及び
IRチャートの有無 宿・無		※試験液を直接分析機器に導入。		プロパンジオールは各々、5.3、4.7
用 途*2 合成樹脂、脱水剤、乾	桌 剤	】2. 実施機関 』・財団法人 化学物質評価研究機構		
生産量*2(16年) 製造及び輸入	10,000~100,000 t 未満	- 3. 特記事項		O-CH ₂ -CH-CH ₂ OH OH
試 料 購入先 Aldrich Chem	ical .	・分解度の平均値が負の値に算出されたため、0と表記した。	О—СН₂-СН—СН₂	3- (2-メチルフェノキシ) - 1, 2-プロパンジオール
経済産業公報発表年月日	年 月 日	されたため、いて衣配した。	被被物質	☆ 変化物A

*I Aldrich Chemical 添付資料による。

+2 化学物質の製造・輸入量に関する実態調査による。

*3 Kowwin v 1.67による計算値。

	•			
濃縮度試験 事業対象年度 平成19年度	濃縮度試験契約	年 月	日	毒 性 試 験
試験期間 19. 9.20~19.11. 1	試験期間	~		年月日
試験装置 標·揮 LC50 値 mg/L(hr) 魚種(試験装置 標・揮 LC	50値 mg/L(hr)魚種()	依
水槽設定濃度 ()	水槽設定濃度 ()			頼
分散剤	LL WANT.	分散剤		経過
被験物質	被験物質			松野 加
第1 濃度区	第1濃度区			
第2 濃度区	第2濃度区			·
第3濃度区 .	第3濃度区	PRI LLAG		
/K: 1 12 /6		含有率 開始前 % 魚種(% 魚種()	
日後 日後 日後 日後 日後	水槽濃度()	1後 日後 日後 日後	日後	
第一	第			,
1 倍 率	1 倍 率 ——	!		·
第 水槽鏡度 ()	第 水槽濃度 ()			
2 倍 率	2 倍 率 ——			
	水槽濃度 ()			
3 倍 率	3 倍 率 ——			
審査部会 第 7 7 回 2 0年 7月 2 5日 開催	審査部会 第 回	年 月 日開催		
判定結果	判定結果			
備考	備考	·	·······	
分配係数から類推				
) BUNSAN DANIE				
[実施機関] 財団法人 化学物質評価研究機構				
			•	

K-1827の類似物質表

化 合 物 名 (CAS 番号)	構 造 式	官報公示 整理番号 (K-番号)	分解度(%)	分解 判定 (年)	分配係数 (log Pow)	LC50 mg/L (ヒメダカ)	濃 縮 倍 率	濃縮 判定 (年)
[(2ーメチルフェノキ シ)メチル]オキシラン (2210-79-9)	О-СН ₂ -СН-СН ₂	3-0574 (K-1827)	標準(4W) 2008年実施 BOD -3, -3, -2 (0)*1 TOC 2, 3, 1 (2) HPLC 91, 91, 90 (90)		2007 年実施 2. 28 (フラスコ振とう法)		分配係数から類批	
フェニルグリシジルエーテル		3-0559	標準(4W) 1982年実施 BOD 18, 33, 20 (24) TOC 19, 35, 20 (25) HPLC 93, 94, 92 (93)	保留 (1982)				
(122-60-1)	V—O—CH₂-CH→CH₂	(K-651)	逆転(4W) 1982年実施 BOD 58, 33, 62 (51) TOC 66, 18, 68 (51) HPLC 98, 97, 98 (97)	良分解生 (1982)				
pーsecープチルフェニルグリシジルエーテル・(67557-76-0)	н ₃ С-Сн ₂ -Сн-Сн ₂ -Сн-Сн ₂	3-0575 (K-795)	標準(4W) 1986年実施 BOD 0, 0, 0 (0) TOC 0, 0, 0 (0) G C 77, 78, 77 (77) [p-sec-ブチルフェニルー 2, 3ージヒドロキシブロビル エーテルを生成し、残留した。]	新公介科性 (1986)	3. 56*²			高濃縮性 ではない (1986)
p-sec-ブチルフェニル-2,3-ジヒドロキシプロピルエーテル(-)	н₃с-сн₂-сн-сн₂-сн-сн₂ сн₃ он он	_ (K-795 変化物)			1986 年実施 2.71 (フラスコ振とう法)	40. 2 (48hr)	1986 年実施 1 区(200μg/L): 4.7~6.5 2 区(20μg/L):<1.7~6.8 脂質含有率 4.2%	高波線性 ではない (1986)

*1 分解度の平均値が負の値に算出されたため、0と表記した。

*2 Kowwin v 1.67による計算値。

整理番号 K-1828	(4-0580)			分	解』	度、試	験			 分 解	度	試	 簽			分	解	度部	大 験	
1 <i>⊩</i> インデン		事	業文	才象年	度	平成	19年度	多	2 '約	····	年	月	日	契	糸		4	手	月 E	3
(95-13-6)		試導	験期	間	19.	10. 23	~20. 2. 6	甜	験期間	-		~		試) ()	間		•	~ .	
		試験	験装	置		標	· 🕸	甜	験装置		標		押	試	後装	T		標	· 揮	
構造式(示性式)・物理化学的性制	.			試	験	濃	度		į.	t į	検	濃	度			試	験	濃	度	
				被験物	勿質	100) mg/L	T	视	験物質	其 (me	s/L	1.		被験4	勿賀		mg/L	
				汚	泥	30) mg/L		ř	5 }	尼	ш	s/L			汚	泥		mg/L	
	~	本	試點	與期間			.4 週間	4	試験	期間			週間	本	試影	與期間			週	間
分子式 C ₉ H ₈	分子量 116.16		間)	-6, -	6, -4 (0)		間						間			_		İ
純 度*1 96.2% (GC)	外 観 ごくうすい黄色透明液体	1 1000	接				,	試	接				•	試	接			•		:
不純物*1(物質名,含有率)	溶解度 (対水, その他)	験結	Γ	HPI	LC	0,	1, 1 (1)	】 駼	1 1					験結						
残り 3.8%は不明	対水 213mg/L (20℃) 対酢酸エチル 10g/L 以上 対アセトニトリル 10g/L 以上	果						果		,				果	直接		•			
融 点 -8.1℃	1 - オクタノール/水分配係数 log Pow = 3.02 (フラスコ振とう法)	審:	査部			第 7		者	上 F査部	 会 年	——— 第 月	•	———— 可 開催	審	査部		¥	第	回用例	
沸点 185.7℃	加水分解性	和	ង					*)定		· ·		,,,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	末川	·····································					
蒸気圧 2. 29×10 ² Pa (25℃)			7						考		,,-				-					
密 度*1 0.993g/mL(20℃)	解離定数		回收水		験物	質)系	94.0%													
LD50	· .					質)系														
IRチャートの有無 有・無				を機関 T法人		- 物質:	評価研究機材	佐											٠	
用 途				事項		177,541	ייאט טייל ניפי וייאו זיי	1												
生産量*2(16年) 未公表			分角	解度の	平均		負の値に算出	4												
試 料 購入先 和光純薬工業		Į.					記した。 勿質であるた													
経済産業公報発表年月日	年 月 日						しなかった。													

^{*1} 和光純薬工業添付資料による。 *2 化学物質の製造・輸入量に関する実態調査による。

濃縮度試験		事業対象	年度	平成1	9年度		禮	縮度試	倹							毒 性 試
試験期間		19.	8. 14	4 ~ 1	9.	8. 27	試	験期間		•	•	~		•		年 月 依
試験装置	漂・揮	LC50 値	. mg/	L(hr)魚種(Λ	試	(験装置	標·指	I LC50 f	i n	g/L(h	r)魚種	()		
水槽設定機	度 () .		<u>.</u>	·	\angle	水	槽設定法	養度 ()					•	類
	被験物	1年 —		分散	剤				411	と験物質		分制	文 剤		·	経過
	122 -524 12.				4				10	(秋初 貝	,		٠.			
第1濃度区				/			筹	1 濃度	Z _							
第2濃度区							第	82濃度	Z					_		
第3濃度区	<u> </u>						第	第3濃度	X							
濃縮 倍 率	['] lli	質含有率			魚種		1	縮倍器	赵	脂質含	11-2-1		% % 魚			
水槽濃度(日後	日後	日後	日後	日後		水槽濃度		日後	日後	日後	日行	後 日後	•	
第	· /	/ 			-		第								• ,	
	率						Ľ	倍								
水槽濃度(第	/						第	水槽濃度	-					_		
2 倍	窜一			-		<u> </u>	- 2	倍	率				-		•	
水植 湖 度()						第	水槽濃度	()						٠	
	率						3	倍	率、				:			
審査部会	第77	回 20:	年	7月 2	5日	L 開催	審		第	」 回	年	月	日	開催	· .	
判定結果				·			判	定結果								
備考								一						,		
														•		
		分配係数	汝から類	推									•			
[実施機関]	財団法人	、化学物學	军政研研	空機構												

K-1828の類似物質表

化 合 物 名 (CAS 番号)	横 造 式	官報公示 整理番号 (K-番号)	分 解 度 (%)	分解 判定 (年)	分配係数 (log Pow)	LC50 mg/L (ヒメダル)	溅 縮 倍 翆	濃縮 判定 (年)
1 <i>H</i> -インデン (95-13-6)		4-0580 (K-1828)	標準(4W)2008年実施 BOD -6, -6, -4 (0)*¹ HPLC 0, 1, 1 (1)		2007 年実施 3. 02 (フラスコ振とう法)		分配係数から類推	
3a, 4, 7, 7a-テトラヒドロ-1/ナインデン(3048-65-5)		4-0581 (K-832)	標準(4W)1996年実施 BOD 0, 0, 0 (0) G C 2, 0, 3 (2)	遠鏡分降性 (1996)	1997 年実施 3.83 (フラスコ振とう法)	>26.0 (48hr)	1998 年実施 1 区(100μg/L): 102~285 2 区(10μg/L): 160~335 脂質含有率 3.6%	高級統計 ではない (1998)
ナフタレン		4-0311	標準(2W)1977年実施 BOD 0, 0 (0) G C 0, 0 (0)	保留 (1977)	3. 17**	9. 0	1979 年実施 1 区(150μg/L): 37~168 2 区(15μg/L): 23~146	高旗和性ではない
(91-20-3)		(K-58)	逆転(4W)1977年実施 BOD 0, 7 (3) G C 0, 0 (0)	延分解机 (1982)		(48hr)	温度含有率 —	(1979)

^{*1} 分解度の平均値が負の値に算出されたため、0と表記した。

^{*2} Kowwin v 1.67による計算値。

整理番号 K-143B	(3-2024)	分解度試験	分解度試験	. 分解度試験
4-アミノ-2-クロロトルエン-5-ス	ルホン酸ナトリウム (6627-59-4)	事業対象年度 平成18年度	事業対象年度 平成 年度	契約 年月日
		試験期間 18.12.26~19.5.17	試験期間 ~	試験期間 ~
	,	試験装置 原・揮	試験装置 標 · 揮	試験装置 標 · 揮
構造式(示性式)・物理化学的性料	*************************************	試験濃度	試 験 濃 度	試験濃度
/=	Cl ·	被験物質 100 mg/L 汚 泥 30 mg/L	被験物質 ng/L 汚 泥 ng/L	被験物質 mg/L 汚 泥 mg/L
H_2N	∕—CH ₃	本試験期間 4 週間	本試験期間 週間	本試験期間 週間
		間 BOD 0, 0, 2 (1)% 接	接	接
NaO₃S	·	試	試	一試 ————
		験 結 直	験 結 直	験
分子式 C,H,CINN a O,S	分子量 243.65	果 HPLC -2, -1, -1 (0) %	果	→ 果 [□]
純 度 99.9%	外 観 白色結晶性粉末			
不純物(物質名,含有率)	溶解度 (対水, その他) 対水 >100 mg/L	審査部会 第 6 8 回 19年10月26日開催	審査部会 第 回 年 月 日開催	審査部会 第 回 年 月 日開催
融 点 一		判定	判定	判定
沸 点 一	1-オクタノール/水分配係数	備考	備考	備考
密度	_	1. 回収率 (汚泥+被験物質)系 100%		
LD50	安定性			·
チャートの有無 旬・無	-	株式会社 三菱化学安全科学研究所		
用 途*1 添加剤(塗料、顔料)				
生産量 ^{*1} (16年)製造及び輸入	100~1,000 t 未満			
試 料 和光純薬工業	株式会社			
経済産業公報発表年月日	月 日			

^{*1} 化学物質の製造・輸入量に関する実態調査による。

濃縮度記	験						濃	縮度試験						,					毒	性話	式 髮
試験期間		19. 1	2. 20 ~ 2	0. 3. 19			試	験期間		•	•	~			1			<i>[</i> -	枚	年 月	B
試験装置	· · · · · · · · · · · · · · · · · · ·	軍 LC50	値 >100 m	g/L (96hr) 魚種(ヒ	メダカ)	試	験装置	標・揖	LC50	· 值	ng	;/L (hr) 魚種							
水槽設定	濃度 (μg/L)				•	水	槽設定濃	度()								刺	頁		
	žute	験物質		分散	剤				24	験物質	,	分散	剤						経過		
	100	秋10月					·		122	級切員									~~~~		
第1濃度	. 	200					┼	6」濃度区			=,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
第2濃度		20					 	育 2 濃度区				· · · · · · ·		`	,						
第3濃度	区		£ 44 BB	Hr 0 9 9			1	育3 濃度区			88 +4 4		0/	·			_				
濃 縮 倍	率		有率 終了征					縮倍率		脂質含	4 × 1 ×		% % 魚雅								,
水槽濃度	(μg/L)	4 日後205	7日後	14 日後 205	21 日後 205	28 日後 203		水槽濃度(1	日後	日後	日後	日往	後 日後							
第 倍	郊	<3	<3	<3	<3	⟨3	第	倍	率		·										
	+ ξ (μg/L)	20. 6	<3 20. 6	<3 20. 7	<3 20. 3	20. 2	1	水槽濃度(
第一		<24	⟨24	<24	<24	<24	第 2			 							•				;
2 倍	率	<24	<24	<24	<24	. <24		倍	率												
水槽邊!	·····			<u> </u>		<u> </u>	第	L		 				<u>'</u>					•		
3 倍							3	倍	率												
審査部会	第7	7回 2	0年7月2	25日期(崔		審	全部查	第	0	年	月	B	開催							
判定結果	ŧ.		÷				判	定結果													
備考	· · · · · · · · · · · · · · · · · · ·						備	青 考					•								
[定常状態 	における渡		第1濃度区 第2濃度区	<3倍 <24倍																	
回収			[定量下	限濃度]	:r:	_ a							•			•					
試験水	99. 3	%	試験水	第1濃度 第2濃度	区 5 区 0.5	μg/L μg/L															
供試魚			供試魚	l	430							Ċ									
[実施機	関]株式会	社三菱化学	安全科学研	究所														 			

整理番号 K-1201C	(3-0078)	分解度試験	分解度試験	分解度試験
2,5-ジクロロトルエン (19398-6	1-9)	事業対象年度 平成18年度	事業対象年度 平成 年度	契約 年月日
		試験期間 19. 1.17~19. 5.17	試験期間 ~	試験期間 ~
		試験装置 Closed bottle	試験装置 標 · 揮	試験装置 標 揮
構造式(示性式)・物理化学的性が	`	試 験 濃 度	試 験 濃 度	試験濃度
CI		被験物質 4.17 mg/L 汚 泥 50 μL/L	被験物質 mg/L 汚 泥 mg/L	被験物質 mg/L 汚 泥 mg/L
	\	本試験期間 4 週間	本試験期間 週間	本試験期間 週間
	CH ₃	間 BOD 0, 0 (0)% 技	接接	接接
	CI	験 GC -2, -5 (0) %	験	験丝
分子式 C ₇ H ₆ C l ₂	分子量 161.03	果接	果直接	接
純 度 86.5% ¹¹ 98%以上 (GC) ²	外 観 僅微黄色透明液体* ¹ 無色透明液体* ²			
不純物(物質名, 含有率) 2,4-ジクロロトルエン:9.9% ¹ 2,6-ジクロロトルエン:2.5% ¹ 2,3-ジクロロトルエン:1.2% ¹	溶解度(対水, その他) 対水 105mg/L* ^{2*3}	審査部会 第 6 8 回 1 9年1 0月2 6日開催	審査部会 第 回 年 月 日開催	審査部会 第 回 年 月 日開催
融 点 4~5℃*1		判定	判定	判定
游点 197~200℃ ¹ 199℃ ¹²	1-オクタノール/水分配係数 -	備 考 1. 回収率	備考	備考
を 度 	安定性	(水 +被験物質) 系 103% (汚泥+被験物質) 系 99%	· .	
チャートの有無 (有)・無	-	2. 実施機関 株式会社 三菱化学安全科学研究所		
用 途				
生産量 (年)	•			
試 料 和光純薬工業 東京化成工業	株式会社 ¹¹ 株式会社 ¹²			
経済産業公報発表年月日	月日			

^{*1} 分解度試験サンプル、*2 濃縮度試験サンプル、*3 株式会社三菱化学安全科学研究所測定値

					•															
. 31	農縮度試験		··		-		₩ \$	宿度試験							, I	····			bl. i	** 0
-	式験期間	10	12. 7 ~ 1	20 2 12				ーニー		<u>-</u>					部位別試験	(濃縮倍率)	-			試 §
<u> </u>	式験装置 杉				At the live)				,	•	~	•		第1濃度区 外皮		· C	t	4- 7	71 -
			iO値 2.7m	RV F (20111)	派性(こ	メタル		食装置 楊		C50 個		m	ig/L (hr) 魚 種	頭部	760 1150	Į.	須		
71	k槽設定濃原	E (µg/L)					水柏	指設定濃度	()					内臓 可食部	2370 703	[<u> </u>		
		被験物質	2ーメトキシエ	分都	剤		-		被験物	質	····	分背	対 剤		第2濃度		1	経過		
4	to a sometime of	90	<u>/-l/</u>					4 1884			· · · · · · · · · · · · · · · · · · ·				外皮 頭部	1180	}			
-	第1濃度区 ************************************	20	25000					1 濃度区				-			内臓 可食部	2830 819		,		
-	第2 濃度区	2	25000				+	2 濃度区				<u> </u>								
-	序3濃度区		A4 8B	前 5.6%			 	3 濃度区	<u>L</u>		8847	<u> </u>	0/	 	排泄試験(第1濃度)					
遵	縮倍率		含有率解始		スト ストリング スト		_1	音倍 率	脂質	全含有	明始前 終了後	į ć	% % 魚和	ti ()	第2濃度					
	nt Height (後 13 日後				_	_Listentiete /		日後	日後	日後	日往	多 日後		•				
第		133		19. 6 1210	19. 7 1310	19. 6 1220	第	水槽濃度(
	倍	率 114		1200	1130	1070	$\frac{1}{1}$	倍 :	卒	-				-						
第	水槽濃度 (με			1. 93	1. 94	1. 93	第一	水槽濃度()						1					- '
2		率 115		1330	1220	1070	2	倍 3	率 ——		·				·					
-	水槽濃度(829	1270	1040	1180	1160	H	水槽濃度(•		•
第 3							第一			+			 						•	
ľ	倍	率						倍	率							•				
暑	皆查部会	第 7 7 回	20年7	月25日	開催 .		審查	会略之	第 [<u> </u>	年	月	B	開催						
* #	判定結果						判知	定結果				•			,					
<u> </u>	備考						備	考							· ·	•				
	[定常状態にお	する濃縮倍率]	第1濃度区	1190倍																
	िल्ला चीर चीर		第2濃度区	1160倍 「限濃度]																
	[回 収 率] 試験水	100%		`സ(妖)及」 (第1 濃度	区 1 pg	g/L										•				
		実施せず)			区 0.1									· .						
		91. 3% ₩-₽Δ+L= * /	供試魚 化学安全科学研	•	38 n	g/g									1					

K-1201C類似物質表

化 合 物 名 (CAS 番号)	構 造 式	官報公示 整理番号 (K- 番号)	分解度(%)	分解 判定 (年)	分配係数 (log Pow)	LC50 mg/L (ヒメダカ).	濃縮 倍率	濃縮 判定 (年)
2. 4ージクロロ トルエン (95-73-8)	CI	3-78	標準(4W) BOD 0 G C 0	難分解性 (1995)		4. 03 (48hr)	1 区(20μg/L): 606~858 2 区(2μg/L): 639~939 脂質含有率 4,4%	低機箱性 (1995)
2, 6 -ジクロロ トルエン (118-69-4)	CI	3-78	標準(4W) BOD 0 GC 0	就分解性 (1996)		5. 57 (48hr)	1 区(20μg/L): 379~567 2 区(2μg/L): 246~828 脂質含有率 3.9%	

整理番号 K-1201D	(3-0078)	分解度試験	分解度試験	分解度試験
3, 4-ジクロロトルエン (95-75-0)		事業対象年度 平成18年度	事業対象年度 平成 年度	契 約 年 月 日
		試験期間 19. 1.17~19. 5.17	試験期間 ~	試験期間 ~
		試験装置 Closed bottle	試験装置 様 · 揮	試験装置 標 · 揮
構造式(示性式)・物理化学的性状	. .	試 験 濃 度	試験濃度	試 験 濃 度
		被験物質 4.17 mg/L 汚 泥 50 μL/L	被験物質 mg/L 汚 泥 mg/L	被験物質 mg/L 汚 泥 mg/L
CI—	>—CH ₃	本試験期間 4 週間	本試験期間 週間	本試験期間 週間
		間 BOD 0, 0 (0)% 接	間	間接
Cl		験 GC -3, 1 (1) %	接験結束	験幼
分子式 C ₇ H ₆ C l ₂	分子量 161.03	集	果	
純 度 95%以上 (GC)*2 不純物 (物質名, 含有率)	外 観 無色透明液体 溶解度(対水,その他)			
小桃树(树具石,古竹平)	対水 36mg/L*2*3	審査部会 第 6 8 回 1 9年1 0月2 6日開催	審査部会 第 回 年 月 日開催	審査部会 第 回 年 月 日開催
融 点 一		判定	判定	判定
沸 点 205℃	1-オクタノール/水分配係数	備考	備考	備考
密度		1. 回収率 (水 +被験物質)系 100%		
LD50	安定性	(汚泥+被験物質)系 103%		
チャートの有無 (有・無	- 通常の取り扱い条件においては安 定。酸化剤との接触に注意する。	2. 実施機関 株式会社 三菱化学安全科学研究所		
用 途				
生産量 (年)		·		
試 料 東京化成工業	株式会社			*
経済産業公報発表年月日	月 日			

^{*1} 分解度試験サンプル, *2 濃縮度試験サンプル, *3 株式会社三菱化学安全科学研究所測定値

濃縮	度試験							湯	¥縮度試験								1	毐	性	試	 験
試験	朔間		19. 1	2. 17 ~ 2	0. 3. 18			証	【験期間				~	•		部位別試験(H		月	
試緊	後接置 枝	票・揮	LC50	值 2.8 mg	/L (96hr)	魚種(ヒ	:メダカ)	記	【験装置	票・揖			m		hr) 魚 種	第1 濃度区 外皮	817	依			
水槽	設定濃度	雙 (pg/	/L)					水	(槽設定濃)	er ()				777 711 12	頭部 内臓	938 2700	頼			
						タ 剤				T			分 散	7 251		可食部	607				
		被験物	勿質	2-メトキシエタ				1		被	験物質	• • • • • • • • • • • • • • • • • • • •	73 🔐	, ,,,,		第2 濃度区 外皮	1150	経過	3		
筮 1	濃度区	20		<i>)−\k</i> 25000	-			4	1 濃度区	+						頭部	1040				
	濃度区	20		25000	1.		-	+-		-			-			内臓 可食部	2770 777				
				25000				┢	62濃度区	<u> </u>			-								
	濃度区	<u> </u>		別から	ff 6 1 9		-	-	63濃度区			- A + 88	\			排泄試験(半 第1濃度区					
農縮	倍 率	A	質含	有率 開始前					縮倍率		脂質含有	育率 開始 育率 終了	II 炎	% % 魚種	()	第2濃度区					
	k構濃度(με		7日後				後 39 日後		Literature /		日後	日後	日後	日後	日後		•				
第			19. 0 1230	18. 8 1270	18. 8	18. 6 1080	18. 6	第	水槽濃度(,						
1	倍 !	XXX	1200	1040	1140	1100	944	1	倍	率					 						-
第	√槽濃度(μg	g/L)	1. 99	1. 88	1. 84	1. 84	1. 85	antr	水槽濃度()				****							
2	倍	率	765	985	653	826	1010	第 2	倍	率		·					v.		·		
-	〈椿濃度 ()	795	1210	1070	737	941	-	水槽濃度(•					
第 一 3							 	第													
<u>" </u>	倍 2							3	倍	率			,								
審査	部会 :	第77回	3 2	0年7月2	35日開作	催		審	查部会	第		年	月	日	開催						
判定	結果							判	定結果												
備	考			· 	· · · · · · · · · · · · · · · · · · ·			備	· · 考												
[定	常状態におり	する濃縮倍		第1濃度区 第2濃度区	1100倍 866倍					ž									,		
		100% 実施せず)	•	[定量下 試験水		EK lp					•			,	`				•		
	試魚 8	38. 7%		供試魚 安全科学研3		47 n					•			,							

K-1201Dの類似物質表

化 合 物 名 (CAS 番号)	柳 造 式	官報公示 整理番号 (K-番号)	分 解 度 (%)	分解 判定 (年)	分配係数 (log Pow)	LC50 mg/L (ヒメダカ)	濃 縮 倍 率	機縮 判定 (年)
2, 4ージクロロ トルエン (95-73-8)	Ci Ci	3-78	標準(4W) BOD O G C O	鄭分 坪 性 (1995)		4.03 (48hr)	1 区(20μg/L): 606~858 2 区(2μg/L): 639~939 脂質含有率 4.4%	低緩縮性 (1995)
2, 6ージクロロ トルエン (118-69-4)	CI	3-78	標準(4W) BOD O GC O	難分解性 (1996)		5. 57 (48hr)	1 区(20μg/L): 379~567 2 区(2μg/L): 246~828 脂質含有率 3.9%	氏濃縮性 (1996)

整理番号 K-1760	(NEDO 335, 3-0540)		3	分解度試験		分	解度	試験		- 5	分解	度記	式 験
2, 6-ジ-tert-ブチルー	1 -sec-ブチルフェノール	事業	対	快年度 平成17年度	孝	2 約	年 、	月 日	契	約		年	月 日
(17540-75-9)		試験	期問	17. 8. 3~18. 2.14	試	験期間		~	試験	期間			~
		試験	装置	標 · 揮	試	験装置	標	· 揮	試驗	装置		標	・ 揮
構造式(示性式)・物理化学的性	犬		試	験 渡 度		試	験 湖	度度		試	影	池	度
ÇH ₃ .	ОН СН₃		被	験物質 100 mg/L		被験物	物質	mg/L		被	験物質	t	mg/L
H ₃ CÇ	С—СН3		汚	泥 30 mg/L		汚	泥	mg/L		汚	浙	<u>:</u>	mg/L
CH ₃	CH₃	本試	験	月間 4 週間	本	試験期間		週間	本部	试験 其	期間		週間
• 	CH	1 1'	այլ	BOD -1, -1, -1 (0) %		間		<u>.</u>		間			
H ₃ C	CH ₂ CH ₃	6八	妾		試	接			八八	接			
		験結		HPLC 3, 2, 1 (2) %	験結	:			験結	-#-		•	
分子式 C18 H30 O	分子量 262.43	果	直接		果		,		果	直接			
純 度*1 96.4%	外 観*1 白色固体] '	* [. '	7	1K])X			
不純物*1(物質名,含有率)	溶解度 (対水, その他) 対水 547μg/L(フラスコ法、25℃)	審査	部分	第 5 6 回	篧	査部会	第	回	審	查部 给	}	第	<u> </u>
残り 3.6%は不明	対テトラヒドロフラン 10 g/L 以上		1	8年 7月21日開催		4	羊 月	日開催			年	月	日開催
融 点*2 25℃	対アセトニトリル 10 g/L 以上 対クロロホルム 10 g/L 以上	判	定	難分解性	*	定			判	定			-
沸 点*2 141~142℃(10mmHg)	1-オクタノール/水分配係数	備	考	,		the ROUGH FF	(残留率 (9/\	備	考			
密 度*2 0.902 g/cm³(25℃)	log Kow = 6.43*3	1. 恒		8 - 被験物質)系 95.1%	ا		験液リー						
LD50	安定性			- 被験物質)系 95.8%	-			0 90 0 88					
IRチャートの有無 宿・ 無		2. 実		護関 法人 化学物質評価研究機材	Ì	1	89	1 · 90 0 89	. i .		•	•	
用 途				•		被験物質	は一部変	化し、不明変					
生産量 (年)			解	度の平均値が負の値に算出	4	被験物質	【の一部は	留する。また、 ソーダライム					•
試料 購入先 Aldrich Chem	ical	<u> </u>	れり	こため、0と表記した。		に吸着し	た。						•
経済産業公報発表年月日	年 月 日					•		,					, -

^{*1} Aldrich Chemical 添付資料による。 *2 Sigma-Aldrich Material Safety Data Sheets (Version 1.2)による。

濃	縮度試験		事業	—————— 类对象年度	平成1	9 年度	:	濃	縮度試験					年	月		日	部位別試験	(濃縮値	~~~~		声	性	試	験
試	験期間		19.	12.21	~ 2	0.	3. 31	試	験期間					~	,			第1濃度区		,	14-	[年	月	日
試	(験装置 核	* · (#) LC50 f	直 3.64 mg	/L (96h:	r) 魚種 (ヒメダカ)	試	験装置 材	東・揖	LC50 位	i ·	mg/	L(hr	魚種	()	外皮 頭部	-	21000 38000	依				
水	(槽設定濃度	ξ (μ	g/L)	#WP F-WET	•			水	楷設定濃度	£ (· · · · · · · · · · · · · · · · · · ·	-01						内臓 可食部		89000	頼				
_				<u> </u>	分散	一 剤				T				分 散	剤			第2 濃度区		10000		1			
		被駁	物質	HCO-40	NNV				•	被	i 験物質				1			外皮 頭部		30000 45000	網	過			
444	f 1 3mm mic lot	-			ホルム [*] 200			440	f 1 Sett interior	+										100000		`.			
<u> </u>	1 濃度区		10	50	—			-	1 濃度区									可食部	21000,	16000					,
第 	2 濃度区		1	5	200	100			2 濃度区	 								排泄試験(4	·減期)						,
第	3 濃度区							第	3 濃度区	<u> </u>								第1濃度区	17 F						
濃	縮倍率		脂質含	有率 開始前 解本 終了後	4. 16 5. 34	% % 魚種	〔(コイ)	濃	縮倍率		脂質含有	事率 解外	台前 了後		% % 魚和	重()	第2濃度区	15 [1					
			13 日後	26 日後 3	39 日後	49 日往	60日後				日後	日後	٤	日後	日往	後	日後								
第	水槽濃度(με	g/L)	8. 92		8. 39	8. 63		第	水槽濃度()			-			\perp									
1	倍		14000 15000	 	26000 27000	31000	35000	1	倍	率			+-			+									
	水槽濃度 (με	7/11	0. 882	 _ _ 	0. 824	0. 864		\vdash	水槽濃度()	1		╁			-					·				
第			16000	}	26000	33000		第					1			\top									
2	倍	率	14000	22000	29000	33000	-	2	倍	率								, ,							
	水槽濃度()						第	水槽邊度(•)				$\overline{\cdot}$											
第3	倍	率				<u> </u>		3	倍	率			↓.			_			•						
닏			•			<u> </u>	<u>. </u>	-			<u> </u>	<u> </u>		l											
審	査部会 ***	第 7 	7 回	20年 ————	7月	25日	開催	蕃	査部会	第	回	年 ————		月		開	催								
半.	 定結果						٠	判	定結果					٠.						٠					
Í	带 考					·····	***	備	考									ļ		•					
	[定常状態におん	する濃縮		51 濃度区 3																					
	Fee also she?		Ä	第2 濃度区 3																					
1	[回 収 率] 試験水		83. 55	[定量下限 % 試験水		区 0.	73 ug/L		•											٠					
	estances.		20.07				073μg/L									•									
l l	供試魚			% 供試魚			Ong/g														-				
[[実施機関]]	財団法	长人 化学	物質評価研	F究機構	\$		-																	

K-1760の類似物質表

	· ·							
化 合 物 名 (CAS 番号)	構 造 式	官報公示 整理番号 (K- 番号)	分 解 度 (%)	分解 判定 (年)	分配係数 (log Pow)	LC50 mg/L (ヒメダカ)	濃 縮 倍 率	濃縮 判定 (年)
6 - tertープチルー 2, 4 - キンレノール (1879-09-0)	CH ₃ OH CH ₃ CCH ₃ CH ₃	3-0540 (K-1228)	標準(4W) 1995 年実施 BOD 4, 3, 5 (4) G C 0, 4, 0 (1)	鄭分解性 (1995)	1995 年実施 4. 08	6. 58 (48hr)	1995 年実施 1 区(20μg/L): 107~213 2 区(2μg/L): 58~263 脂質含有率 3.9%	高濃縮性 ではない (1995)
2, 6-ジ - tert-ブ	СН ₃ ОН СН ₃ Н ₃ С—С С—СН ₃	3-0540	標準(2W) 1975 年実施 BOD 0, 0 (0) G C 10, 21 (16) U V(280mm) 11, 30 (20) 逆転(4W) 1977年実施 BOD 22, 34 (28)	難分解性 (1975) 再試験 指示	F 00#1	5.9 (48hr)	I. 1976 年実施 1 区(500μg/L): 500~5000 2 区(50μg/L): 1000~3100 脂質含有率 —	
チルー p ークレゾール (128-37-0)	сн ₃	9-1805 (K-80)	G C 47, 68 (58) 1978 年実施 被験物質 50 mg/L 汚 泥 50 mg/L (4W) BOD 5, 4 (5) G C 5, 0 (3)	(1977) 跳分解性 (1978)	5. 03* ¹	5.0 (48hr)	II. 1979 年実施 1 区(500μg/L): 220~2800 2 区(50μg/L): 230~2500 3 区(5μg/L): 330~1800 脂質含有率 —	中濃縮性 (1979)
2, 6ージー tostー ブチルー 4 ーエチル フェノール (4130-42-1)	CH ₃ OH CH ₃ CH ₃ CH ₃ CH ₃ CH ₂ CH ₃	3-0540 (K-1031)	標準(4W) 1989年実施 BOD 0, 0, 0 (0) HPLC 31, 17, 13 (20) [一部ソーグライムに吸着した] (参考データ, ソーグライムなし) HPLC 1, 2 (2)	雞分解性 (1989)	1990 年実施	7.26 (48hr)	1990 年実施 1 区(10µg/L): 1420~5060 2 区(.1µg/L): 930~4870 脂質含有率 3.7%	高濃縮性 ではない (1990)
2, 4, 6ートリー terにープチルフェ ノール (732-26-3)	CH ₃ OH CH ₃ H ₃ C-C-CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	3-0540 (K-555)	標準(4W) 1981年実施 BOD 0, 0, 0 (0) HPLC 1, 9, 5 (5)	類於別州生 (1981)		128 (48hr)	1982 年実施 1区(10μg/L): 4830~16000 2区(1μg/L): 4320~23200 脂質含有率 4.5%	
2,6-ジーtertー ブチルー4ーsecー ブチルフェノール (17540-75-9)	H ₃ C CH ₃	3-0540 (K-1760)	標準(4W) 2005年実施 BOD -1, -1, -1 (0) *2 HPLC 3, 2, 1 (2) 被験物質は一部変化し、不明変化物を生成して残留する。また、被験物質の一部はソーダライムに	英性分为约约 (2006)	1 6 A2T4	3.64 (98hr)	2008 年実施 定常状態における濃縮倍率 1 区 (10μg/L): 32000 2 区 (1μ/L): 33000 脂質含有率 開始前 4.16% 終了後 5.34%	

*1 Kowwin v 1.67による計算値。 *2 分

^{*2} 分解度の平均値が負の値に算出されたため、0と表記した。

前回難分解・高濃縮性判定済みの既存化学物質の毒性評価結果

no	K-No	官報 公示 No	CAS No	名称	化学構造式	分解性 判定	濃縮倍率	濃縮性 判定結果	用途	毒性情報の項目	人への長期毒性についての評価結果	高次捕食動物への長期毒性につい ての評価結果	判定結果	環境省モニタリン グ情報
1	1760	3-0540	17540-75-	2, 6ージー <i>tert</i> ーブチルー 9 4 <i>ーsec</i> ーブチルフェノー ル	H ₃ C CH ₃ OH CH ₃ CH ₃ H ₃ C CH ₂ CH ₃	難	1区: 32000倍 2区: 33000倍	(高)	公表資料なし	なし	第一種特定化学物質に該当するかどうか 判断するための十分な情報がない。	第一種特定化学物質に該当するかどうか判断するための十分な情報がない。	第一種監視化学物質相	当 データなし

1

既存化学物質審査シート(生態影響)

(平成20年7月25日開催)

官報公示			判定結果		707年/
整理番号	CAS No.	物質名称	人健康影響	生態影響	頁
3-4148	348-61-8	1ーブロモー3, 4ージフルオロベンゼン	二監相当 【告示済み】	三監相当	1
3-4071	350-30-1	3-クロロー4-フルオロニトロベンゼン	二監相当 【告示済み】	三監相当	3
4-1686	620-93-9	ジーpートリルアミン	二監相当 【告示済み】	三監相当	5
4-1656	2222-33-5	5Hージベンゾ[a, d]シクロヘプテンー5ーオン	二監相当 【告示済み】	三監相当	7
3-4173	2479-46-1	4, 4'ー(mーフェニレンジオキシ)ジアニリン	二監相当 【告示済み】	三監相当	9
4-1709	6807-17-6	4, 4'ー(1, 3ージメチルブチリデン)ジフェノール	二監相当 【告示済み】	三監相当	11
5-6262	22720-75-8	2-アセチルベンゾ[b]チオフェン	二監相当 【告示済み】	三監相当	13
4-329	90-30-2	1 - (N-フェニルアミノ) - ナフタレン	***************************************	三監相当	15
4-575	91-17-8	ビシクロ[4, 4, 0]デカン		三監相当	17
5-724	504-24-5	4ーアミノピリジン	***************************************	三監相当	19
3-907	615-58-7	2, 4ージブロモフェノール	***************************************	三監相当	21
3-290	634-93-5	2, 4, 6ートリクロロアニリン	***************************************	三監相当	23
4-1819	827-52-1	シクロヘキシルベンゼン	二監相当 【告示済み】	三監相当	25
5-137	948-65-2	2ーフェニルインドール		三監相当	27

既存化学物質審査シート

成存化学物質番宜ンート 				
官報公示 整理番号	3-4148 CAS No. 348-61-8			
判定結果	人健康影響 第二種監視化学物質相当【平成7年5月23日告示済み】 生態影響 第三種監視化学物質相当			
名称 構造式等	名 称:1-ブロモ-3,4-ジフルオロベンゼン F			
	Br			
外観	薄い黄色透明液体			
分解性	難分解性			
蓄積性	高濃縮性でない			
人健康影	第二種監視化学物質相当【新規化学物質として審議済み】			
響判定根	The state of the s			
拠				
藻類生長	生物種:Pseudokirchneriella subcapitata			
阻害試験				
【13年】	培養方式:振とう培養 (密閉系)			
	純度:99.8%			
	試験濃度:設定濃度 5.0、7.3、11、16、23、34、50 mg/L			
	実測濃度 2.1、3.4、5.1、7.4、10、15、22 mg/L(幾何平均值)			
	助剤:なし			
	48hErC50(実測値に基づく) = 14 mg/L			
ミジンコ	48hNOECr(実測値に基づく)=5.1 mg/L			
急性遊泳	生物種:オオミジンコ Daphnia magna 試験法:OECD TG 202(1984)			
心 正 起 你 阻害試験	試験方法:半止水式、24 時間後に換水			
	純度:99.8%			
	試験濃度:設定濃度 3.0、4.6、6.9、11、16 mg/L			
	実測濃度 2.1、3.3、4.8、7.7、12 mg/L(幾何平均值)			
	助剤:なし			
	48hEC50(実測値に基づく) =6.3 mg/L			
ミジンコ	生物種:オオミジンコ <i>Daphnia magna</i>			
繁殖阻害	試験法:OECD TG 211(1998)			
試験	試験方法:半止水式、毎日換水			
	純度:99.8%			
	試験濃度:設定濃度 0.20、0.50、1.3、3.2、8.0 mg/L			
	実測濃度 0.16、0.37、0.91、2.0、5.0 mg/L (時間加重平均値)			
	助剤:なし S1 INOEC (実別ははまずく) 0.01 g			
	21dNOEC(実測値に基づく) = 0.91 mg/L			

魚類急性 生物種:ヒメダカ Oryzias latipes 毒性試験

試験法: OECD TG 203 (1992)

試験方法:半止水式、24時間毎に換水

純度:99.8%

試験濃度:設定濃度 5.0、8.9、16、28、50 mg/L

実測濃度 2.6、4.9、9.7、19、35 mg/L (幾何平均值)

助剤:なし

96hLC50 (実測値に基づく) = 7.8 mg/L

また、以下の濃度群において以下のような毒性症状が認められた。

4.9mg/L 群:異常遊泳(動作の緩慢)(72hr 2/9、96hr 5/7)

遊泳不能(96hr 1/7)

生態影響

備考

魚類急性毒性試験において 96hLC50=7.8mg/L であることから、第三種監視化学物質相

判定根拠

対水溶解度:300mg/L (試験機関測定値 (純水、20℃))

	物貝番宜ンート 			
官報公示 整理番号	3-4071 CAS No. 350-30-1			
判定結果	人健康影響 第二種監視化学物質相当【平成元年3月7日告示済み】 生態影響 第三種監視化学物質相当			
名称 構造式等	名 称:3-クロロー4-フルオロニトロベンゼン CI			
	N ⁺ —F			
外観	微黄色結晶			
分解性	難分解性			
蓄積性	高濃縮性でない			
人健康影響判定根 拠	第二種監視化学物質相当【新規化学物質として審議済み】 ※試験結果は企業に帰属するものであるため非公開。			
藻類生長	生物種: <i>Pseudokirchneriella subcapitata</i>			
阻害試験	生物種:Pseudokirchneriella subcapitata 試験法:OECD TG 201(1984)			
【13年】	培養方式:振とう培養			
110 1	純度:99.5%			
	試験濃度:設定濃度 0.10、0.15、0.22、0.32、0.46、0.68、1.0 mg/L			
	実測濃度 0.072、0.10、0.15、0.21、0.31、0.48、0.71 mg/L (幾何平均值)			
	助剤:なし			
	72hErC50(実測値に基づく)=0.60 mg/L			
	72hNOECr(実測値に基づく)=0.31 mg/L			
	※実測濃度 0.48mg/L と 0.71mg/L の区で細胞の膨潤が見られた。			
ミジンコ	of the same of the			
急性遊泳	試験法:OECD TG 202(1984)			
阻害試験	試験方法:止水式			
	純度:99.5%			
	試験濃度:設定濃度 5.0、7.0、10、14、20 mg/L			
	実測濃度 4.4、6.3、8.8、12、18 mg/L(幾何平均値)			
	助剤: なし			
2 222	48hEC50(設定値に基づく)=8.2 mg/L			
ミジンコ繁殖阻害	生物種:オオミジンコ Daphnia magna			
素畑阻害 試験	試験法: OECD TG 211 (1998) 試験方法: 光点水子 毎日晩水			
HP4 MIT	試験方法:半止水式、毎日換水純度:99.5%			
	試験濃度:設定濃度			
	実測濃度 0.072、0.23、0.71、2.2、7.2 mg/L (時間加重平均値)			
	助剤:なし			
	21dNOEC(設定値に基づく)=0.25 mg/L			
L				

魚類急性 生物種: ヒメダカ Oryzias latipes 毒性試験 試験法: OECD TG 203 (1992)

試験方法:半止水式、24時間毎に換水

純度:99.5%

試験濃度:設定濃度 0.50、0.87、1.5、2.6、4.5 mg/L

実測濃度 0.45、0.74、1.3、2.3、4.0 mg/L (幾何平均值)

助剤:なし

96hLC50(設定値に基づく)=2.0 mg/L

生態影響 判定根拠 藻類生長阻害試験において 72hErC50=0.60mg/L 及び魚類急性毒性試験において

| 96hLC50=2.0mg/L であることから、第三種監視化学物質相当。

備考

対水溶解度:380mg/L (試験機関測定値 (純水、20℃))

既存化学物質審査シート

处行11十	例 負 番 登 シート			
官報公示 整理番号	4-1686 CAS No. 620-93-9			
判定結果	人健康影響 第二種監視化学物質相当【平成4年11月19日告示済み】 生態影響 第三種監視化学物質相当			
名称 構造式等	名 称:ジーpートリルアミン			
外観	微橙黄色結晶性粉末			
分解性 蓄積性	難分解性 高濃縮性でない			
人健康影響判定根 拠	第二種監視化学物質相当【新規化学物質として審議済み】 ※試験結果は企業に帰属するものであるため非公開。			
藻類生長阻害試験【13年】	生物種: Pseudokirchneriella subcapitata 試験法: OECD TG 201(1984) 培養方式: 振とう培養 純度: 99.6% 試験濃度: 設定濃度 0.030、0.048、0.077、0.12、0.20、0.31、0.50 mg/L 実測濃度 -、0.019、0.035、0.052、0.099、0.18、0.34 mg/L(幾何平均値) 助剤: DMF 50 μ L/L 72hErC50(実測値に基づく)=0.14 mg/L 72hNOECr(実測値に基づく)=0.019 mg/L			
ミジンコ 急性遊泳 阻害試験	生物種:オオミジンコ Daphnia magna 試験法: OECD TG 202 (1984) 試験方法:止水式 純度: 99.6% 試験濃度:設定濃度 0.10、0.18、0.32、0.56、1.0 mg/L 実測濃度 0.094、0.17、0.31、0.50、0.93 mg/L (幾何平均値) 助剤: DMF 100µL/L 48hEC50 (設定値に基づく) = 0.40 mg/L			
ミジンコ繁殖阻害試験	生物種:オオミジンコ Daphnia magna 試験法:OECD TG 211 (1998) 試験方法:半止水式、毎日換水 純度:99.6% 試験濃度:設定濃度 0.010、0.025、0.063、0.16、0.40 mg/L 実測濃度 0.009、0.024、0.062、0.14、0.37 mg/L (時間加重平均値) 助剤:DMF 100 μ L/L 21dNOEC (設定値に基づく) =0.025 mg/L			

無類急性 生物種:ヒメダカ Oryzias latipes 毒性試験 試験法:OECD TG 203 (1992) 試験方法:半止水式、24 時間毎に換水 純度:99.6%

試験濃度:設定濃度 0.30、0.41、0.55、0.74、1.0 mg/L

実測濃度 0.21、0.32、0.43、0.61、0.79 mg/L (幾何平均值)

助剤: DMF 100 μ L/L

96hLC50(実測値に基づく)=0.43 mg/L

また、以下の濃度群において以下のような毒性症状が認められた。

0.32mg/L 群:異常遊泳(動作の緩慢)(96hr 3/7)

生態影響 判定根拠 藻類生長阻害試験において 72hErC50=0.14mg/L、72hNOECr=0.019mg/L、ミジンコ急性遊泳阻害試験において <math>48hEC50=0.40mg/L、ミジンコ繁殖阻害試験において <math>21dNOEC=0.025mg/L 及び魚類急性毒性試験において 96hLC50=0.43mg/L であることから、第三

備考 対水溶解度:3 mg/L

対水溶解度:3 mg/L (試験機関測定値 (純水、20℃))

见行 几于	物質番金シート		
官報公示 整理番号	4-1656 CAS No. 2222-33-5		
判定結果	人健康影響 第二種監視化学物質相当【平成2年3月26日告示済み】 生態影響 第三種監視化学物質相当		
名称 構造式等	名 称:5H-ジベンゾ [a, d] シクロヘプテン-5-オン		
外観	淡黄色粉末		
分解性	難分解性		
蓄積性	高濃縮性でない		
人健康影響判定根 拠	第二種監視化学物質相当【新規化学物質として審議済み】 ※試験結果は企業に帰属するものであるため非公開。		
藻類生長	生物種: <i>Pseudokirchneriella subcapitata</i>		
阻害試験	試験法:OECD TG 201(1984)		
【12年】	培養方式:振とう培養		
	純度:97%		
	試験濃度:設定濃度 0.022、0.046、0.10、0.22、0.46 mg/L		
	実測濃度 -、-、0.047、0.17、0.38 mg/L(幾何平均值)		
	助剤:DMF:HCO-40 1:9(14 mg/L)		
	72hErC50(実測値に基づく)=0.14 mg/L		
7 327	72hNOECr (実測値に基づく) =0.011 mg/L		
急性遊泳	生物種:オオミジンコ Daphnia magna		
	試験法: OECD TG 202 (1984) 試験方法: 止水式		
THE HAVEN	純度:97%		
	試験濃度:設定濃度 0.32、0.56、1.0、1.8、3.2 mg/L		
	実測濃度 0.34、0.56、0.96、1.6、2.7 mg/L (幾何平均値)		
	助剤: DMF: HCO-40 1:9 (96 mg/L)		
	48hEC50(実測値に基づく) = 1.9 mg/L		
ミジンコ	生物種:オオミジンコ Daphnia magna		
繁殖阻害	試験法:OECD TG 211(1998)		
試験	試験方法:半止水式、48 時間毎に換水		
	純度:97%		
	試験濃度:設定濃度 0.046、0.10、0.22、0.46、1.0mg/L		
	実測濃度 0.048、0.099、0.23、0.47、0.99mg/L (時間加重平均値)		
	助剤: DMF: HCO-40 1:9 (30 mg/L) 21dNOFC (設定値に基づく) -0.22 mg/L		
1	21dNOEC(設定値に基づく)=0.22 mg/L		

魚類急性生物種: ヒメダカ Oryzias latipes毒性試験試験法: OECD TG 203 (1992)

試験方法:半止水式、48時間後に換水

純度:97%

試験濃度:設定濃度 3.2 mg/L(分散可能最高濃度*)

実測濃度 2.5 mg/L (幾何平均值、分散画分)

助剤:DMF:HCO-40 1:9 (100 mg/L)

96hLC50 (実測値に基づく) >2.5 mg/L (溶解限度で影響が認められなかった。)

※試験機関測定値

生態影響 藻類生長阻害試験において 72hErC50=0.14mg/L、72hNOECr=0.011mg/L であることか

判定根拠 | ら、第三種監視化学物質相当。

備考 対水溶解度:不明(報告書記載なし)

既存化学物質審査シート

宮報公示 2-4173
生態影響 第三種監視化学物質相当 名称
構造式等 H ₂ N
構造式等 H ₂ N
外観 明るい灰黄色結晶性粉末および小塊
分解性 難分解性 高濃縮性でない 高濃縮性でない 第二種監視化学物質相当【新規化学物質として審議済み】 ※試験結果は企業に帰属するものであるため非公開。 ※試験結果は企業に帰属するものであるため非公開。 ※試験結果は企業に帰属するものであるため非公開。
分解性 難分解性 高濃縮性でない 高濃縮性でない 第二種監視化学物質相当【新規化学物質として審議済み】 ※試験結果は企業に帰属するものであるため非公開。 ※試験結果は企業に帰属するものであるため非公開。 ※試験結果は企業に帰属するものであるため非公開。
分解性 難分解性 高濃縮性でない 高濃縮性でない 第二種監視化学物質相当【新規化学物質として審議済み】 ※試験結果は企業に帰属するものであるため非公開。 ※試験結果は企業に帰属するものであるため非公開。 ※試験結果は企業に帰属するものであるため非公開。
蓄積性 高濃縮性でない 人健康影 第二種監視化学物質相当【新規化学物質として審議済み】 響判定根 ※試験結果は企業に帰属するものであるため非公開。 拠 生物種: Pseudokirchneriella subcapitata 選書試験 試験法: OECD TG 201 (1984) 培養方式: 振とう培養 純度: 99.6% 試験濃度: 設定濃度 0.030、0.065、0.14、0.30、0.65、1.4、3.0 mg/L 実測濃度 0.0087、0.028、0.072、0.17、0.40、0.85、2.2 mg/L (幾何平均値) 助剤: DMF 100 μ L/L 72hCC50 (実測値に基づく) >2.2 mg/L 72hNOECr (実測値に基づく) = 0.40 mg/L ミジンコ 2 生物種: オオミジンコ Daphnia magna 試験法: OECD TG 202 (1984) 試験方法: 止水式 純度: 99.6%
大健康影 第二種監視化学物質相当【新規化学物質として審議済み】 ※試験結果は企業に帰属するものであるため非公開。 生物種: Pseudokirchneriella subcapitata 試験法: OECD TG 201 (1984) 日養方式: 振とう培養 純度: 99.6% 試験濃度: 設定濃度 0.030、0.065、0.14、0.30、0.65、1.4、3.0 mg/L 実測濃度 0.0087、0.028、0.072、0.17、0.40、0.85、2.2 mg/L (幾何平均値) 助剤: DMF 100 μ L/L 72hErC50 (実測値に基づく) >2.2 mg/L 72hNOECr (実測値に基づく) =0.40 mg/L 生物種: オオミジンコ Daphnia magna 試験法: OECD TG 202 (1984) 試験方法: 止水式 純度: 99.6%
響判定根 ※試験結果は企業に帰属するものであるため非公開。
機類生長 阻害試験 【13年】 生物種: Pseudokirchneriella subcapitata 試験法: OECD TG 201 (1984) 培養方式:振とう培養 純度: 99.6% 試験濃度: 設定濃度 0.030、0.065、0.14、0.30、0.65、1.4、3.0 mg/L 実測濃度 0.0087、0.028、0.072、0.17、0.40、0.85、2.2 mg/L (幾何平均値) 助剤: DMF 100 μ L/L 72hErC50 (実測値に基づく) >2.2 mg/L 72hNOECr (実測値に基づく) =0.40 mg/L ミジンコ 生物種:オオミジンコ Daphnia magna 試験法: OECD TG 202 (1984) 試験方法: 止水式 純度: 99.6%

阻害試験 試験法: OECD TG 201 (1984) [13年] 培養方式:振とう培養 純度: 99.6% 試験濃度:設定濃度 0.030、0.065、0.14、0.30、0.65、1.4、3.0 mg/L 実測濃度 0.0087、0.028、0.072、0.17、0.40、0.85、2.2 mg/L (幾何平均値) 助剤: DMF 100 μ L/L 72hErC50 (実測値に基づく) >2.2 mg/L 72hNOECr (実測値に基づく) =0.40 mg/L ミジンコ 生物種:オオミジンコ Daphnia magna 急性遊泳 試験法: OECD TG 202 (1984) 試験方法:止水式 純度: 99.6%
「13年】 培養方式:振とう培養 純度:99.6% 試験濃度:設定濃度 0.030、0.065、0.14、0.30、0.65、1.4、3.0 mg/L 実測濃度 0.0087、0.028、0.072、0.17、0.40、0.85、2.2 mg/L (幾何平均値) 助剤: DMF 100 μ L/L 72hErC50 (実測値に基づく) >2.2 mg/L 72hNOECr (実測値に基づく) =0.40 mg/L ミジンコ 生物種:オオミジンコ Daphnia magna 試験法: OECD TG 202 (1984) 試験方法:止水式 純度:99.6%
純度:99.6% 試験濃度:設定濃度 0.030、0.065、0.14、0.30、0.65、1.4、3.0 mg/L 実測濃度 0.0087、0.028、0.072、0.17、0.40、0.85、2.2 mg/L(幾何平均値) 助剤: DMF 100 μ L/L 72hErC50(実測値に基づく) >2.2 mg/L 72hNOECr(実測値に基づく) = 0.40 mg/L ミジンコ 生物種:オオミジンコ Daphnia magna 急性遊泳 試験法: OECD TG 202 (1984) 試験方法:止水式 純度:99.6%
試験濃度:設定濃度 0.030、0.065、0.14、0.30、0.65、1.4、3.0 mg/L 実測濃度 0.0087、0.028、0.072、0.17、0.40、0.85、2.2 mg/L (幾何平均値) 助剤: DMF 100 μ L/L 72hErC50 (実測値に基づく) >2.2 mg/L 72hNOECr (実測値に基づく) = 0.40 mg/L 生物種:オオミジンコ Daphnia magna 試験法: OECD TG 202 (1984) 試験方法:止水式 純度:99.6%
実測濃度 0.0087、0.028、0.072、0.17、0.40、0.85、2.2 mg/L (幾何平均値) 助剤: DMF 100 µ L/L 72hErC50(実測値に基づく)>2.2 mg/L 72hNOECr(実測値に基づく)=0.40 mg/L 生物種: オオミジンコ Daphnia magna 試験法: OECD TG 202(1984) 試験方法: 止水式 純度: 99.6%
助剤: DMF 100 μ L/L 72hErC50 (実測値に基づく) >2.2 mg/L 72hNOECr (実測値に基づく) = 0.40 mg/L 生物種: オオミジンコ Daphnia magna 試験法: OECD TG 202 (1984) 試験方法: 止水式 純度: 99.6%
72hErC50 (実測値に基づく) >2.2 mg/L 72hNOECr (実測値に基づく) =0.40 mg/L ミジンコ 生物種:オオミジンコ Daphnia magna 試験法:OECD TG 202 (1984) 試験方法:止水式 純度:99.6%
72hNOECr (実測値に基づく) = 0.40 mg/L ミジンコ 生物種:オオミジンコ Daphnia magna 急性遊泳 試験法:OECD TG 202 (1984) 試験方法:止水式 純度:99.6%
ミジンコ 生物種:オオミジンコ Daphnia magna急性遊泳 試験法:OECD TG 202 (1984)選害試験 試験方法:止水式純度:99.6%
急性遊泳 試験法: OECD TG 202 (1984) 選害試験 試験方法: 止水式 純度: 99.6%
阻害試験 試験方法:止水式 純度:99.6%
純度:99.6%
网络饭尺·双足饭尺 0.30、1.2、1.6、2.2、3.0 mg/L
実測濃度 0.87、1.2、1.6、2.1、2.9 mg/L (幾何平均値)
助剤:DMF 100μL/L
48hEC50(設定値に基づく) = 2.9 mg/L
ミジンコ 生物種:オオミジンコ Daphnia magna
繁殖阻害 試験法:OECD TG 211 (1998)
式験 試験方法:半止水式、毎日換水
純度:99.6%
試験濃度:設定濃度 0.0030、0.0095、0.030、0.095、0.30 mg/L
実測濃度 0.0026、0.0091、0.029、0.089、0.34 mg/L(時間加重平均値)
助剤: DMF 100 μ L/L
21dNOEC(実測値に基づく) =0.029 mg/L

魚類急性 | 生物種:ヒメダカ Oryzias latipes 毒性試験 試験法: OECD TG 203 (1992) 試験方法:半止水式、24時間毎に換水 純度:99.6% 試験濃度:設定濃度 0.90、1.2、1.6、2.2、3.0 mg/L 実測濃度 0.88、1.2、1.5、2.2、3.0 mg/L (幾何平均值) 助剤: DMF 100 µ L/L 96hLC50(設定値に基づく) =1.9 mg/L また、以下の濃度群において以下のような毒性症状が認められた。 1.2mg/L 群:異常遊泳(動作の緩慢)(24h 8/10、48h 5/10、72h 5/10、96hr 5/10) 1.6mg/L 群:異常遊泳(動作の緩慢)(24h 10/10、48h 5/10、72h 8/10、96h 6/10) 遊泳不能(72h 2/10、96h 4/10) 構造中に芳香族アミンを有しかつミジンコ急性遊泳阻害試験において 48hEC50 生態影響 =2.9mg/L、ミジンコ繁殖阻害試験において 21dNOEC=0.029mg/L 及び魚類急性毒性試験 判定根拠 において 96hLC50=1.9mg/L であることから、第三種監視化学物質相当。 対水溶解度:3 mg/L (試験機関測定値、純水、20℃) 備考

	物質番食ンート
官報公示 整理番号	4-1709 CAS No. 6807-17-6
判定結果	人健康影響 第二種監視化学物質相当【平成8年12月17日告示済み】 生態影響 第三種監視化学物質相当
名称 構造式等	名 称: 4, 4'- (1, 3-ジメチルブチリデン) ジフェノール OH OH OH
外観	白色微細結晶および結晶性粉末
分解性	難分解性
蓄積性	高濃縮性でない
人健康影 響判定根 拠	第二種監視化学物質相当【新規化学物質として審議済み】 ※試験結果は企業に帰属するものであるため非公開。
藻類生長 阻害試験 【12 年】	生物種: Pseudokirchneriella subcapitata 試験法: OECD TG 201 (1984) 培養方式: 振とう培養 純度: 100% 試験濃度: 設定濃度 17 mg/L (分散可能最高濃度*) 実測濃度 17 mg/L (幾何平均値) 助剤: HCO-40 100 mg/L 72hErC50 (設定値に基づく) >17 mg/L 72hNOECr (設定値に基づく) >17 mg/L (溶解限度で影響が認められなかった)
ミジンコ 急性遊泳 阻害試験	 ※試験機関測定値 生物種:オオミジンコ Daphnia magna 試験法:OECD TG 202 (1984) 試験方法:止水式 純度:100% 試験濃度:設定濃度 1.6、2.8、5.1、9.0、16 mg/L 実測濃度 1.6、2.7、4.9、8.7、15 mg/L (幾何平均値) 助剤:HCO-40 96mg/L 48hEC50 (設定値に基づく) =13 mg/L

ミジンコ	生物種:オオミジンコ Daphnia magna						
繁殖阻害	試験法:OECD TG 211(1998)						
試験	試験方法:半止水式、48 時間毎に換水						
	純度:100%						
	試験濃度:設定濃度 0.50、1.1、2.3、5.1、11 mg/L						
	実測濃度 0.47、1.1、2.2、5.0、11 mg/L(時間加重平均値)						
	助剤:DMF:HCO-60 1:5(99 mg/L)						
	21dNOEC(設定値に基づく)=0.50 mg/L						
魚類急性	生物種:メダカ Oryzias latipes						
▋毒性試験	試験法:OECD TG 203(1992)						
	試験方法:半止水式、24 時間毎に換水						
	純度:100%						
	試験濃度:設定濃度 1.0、1.8、3.2、5.6、10 mg/L						
	実測濃度 0.95、1.8、3.2、5.5、10 mg/L(幾何平均值)						
	助剤:THF:HCO-40 1:4(100 mg/L)						
	96hLC50(設定値に基づく)=2.7 mg/L						
生態影響	魚類急性毒性試験において 96hLC50=2.7mg/L であることから、第三種監視化学物質相						
判定根拠	当。						
備考	対水溶解度:不明(報告書に記載なし)						

以行化子1	物質審査シート						
官報公示 整理番号	5-6262 CAS No. 22720-75-8						
判定結果	人健康影響 第二種監視化学物質相当【平成8年12月17日告示済み】 生態影響 第三種監視化学物質相当						
名称 構造式等	名 称:2-アセチルベンゾ [b] チオフェン						
外観	赤みの薄い黄色粉末および小塊						
分解性	難分解性						
蓄積性	高濃縮性でない						
人健康影響判定根 拠	第二種監視化学物質相当【新規化学物質として審議済み】 ※試験結果は企業に帰属するものであるため非公開。						
藻類生長	生物種:Pseudokirchneriella subcapitata						
阻害試験	試験法:OECD TG 201(1984)						
【13年】	培養方式:振とう培養						
	純度:99.9%						
	試験濃度:設定濃度 0.20、0.38、0.74、1.4、2.7、5.2、10 mg/L						
	実測濃度 0.18、0.33、0.64、1.2、2.3、4.4、8.5 mg/L(初期実測濃度)						
	助剤: DMF 100 μ L/L						
	72hErC50(実測値に基づく)=5.4 mg/L						
	72hNOECr(実測値に基づく)=0.64 mg/L						
ミジンコ	生物種:オオミジンコ Daphnia magna						
急性遊泳	試験法:OECD TG 202(1984)						
阻舌武駅	試験方法:止水式						
	純度:99.9% 試験測度:設定測度 4.0 5.6 7.7 11 15 mg/J						
	試験濃度:設定濃度 4.0、5.6、7.7、11、15 mg/L 実測濃度 3.5、4.9、6.7、9.4、13 mg/L (幾何平均値)						
	助剤:なし						
	48hEC50(設定値に基づく)=11 mg/L						
ミジンコ	生物種:オオミジンコ Daphnia magna						
繁殖阻害	試験法: OECD TG 211 (1998)						
試験	試験方法:半止水式、毎日換水						
	純度:99.9%						
	試験濃度:設定濃度 0.12、0.38、1.2、3.8、12 mg/L						
	実測濃度 0.10、0.32、1.0、3.2、10 mg/L(時間加重平均値)						
	助剤:なし						
	21dNOEC(実測値に基づく)=1.0 mg/L						

魚類急性 毒性試験

魚類急性 生物種:ヒメダカ Oryzias latipes

試験法: OECD TG 203 (1992)

試験方法:半止水式、24時間毎に換水

純度:99.9%

試験濃度:設定濃度 7.0、9.6、13、18、25 mg/L

実測濃度 6.0、8.6、12、16、23 mg/L (幾何平均值)

助剤: DMF 100 µ L/L

96hLC50(設定値に基づく)=10 mg/L

また、以下の濃度群において以下のような毒性症状が認められた。

7.0mg/L 群:異常遊泳(動作の緩慢)(72h 2/10)

9.6mg/L 群:異常遊泳(動作の緩慢)(24h 10/10、48h 10/10、72h 7/10、96h 4/4)

遊泳不能 (72h 3/10)

①96hLC50 は正確には 10.1 mg/L である。

生態影響 判定根拠

魚類急性毒性試験において96hLC50=10mg/Lであることから、第三種監視化学物質相当。

備考

対水溶解度:46mg/L (試験機関測定値 (純水、20℃))

Att to A	4.000						
官報公示	4-329	CAS No.	90-30-2				
整理番号							
判定結果	生態影響 第三種監視化学物質相当						
名称	A 称: $1-(N-フェニルアミ)$	名 称:1-(N-フェニルアミノ)-ナフタレン					
構造式等							
	HN————————————————————————————————————						
用途	添加剤(油用)※化学物質の製造・輸	1月2月オス	中能細木 (亚中1 6 左中体)				
外観	褐色個体	人里に関する	天思調宜(平成16年実績)				
分解性							
蓄積性	難分解性	· · · · · · · · · · · · · · · · · · ·					
	高濃縮性でない						
藻類生長	生物種: Pseudokirchneriella sub	bcapitata					
阻害試験	試験法:化審法 TG(2003)		-				
	培養方式:振とう培養	培養方式:振とう培養					
	純度:99.7%	純度:99.7%					
	試験濃度:設定濃度 1.0、3.2、10、32、100%(100 mg/L で調製した水溶性画分(WSF))						
	実測濃度 0.0022、0.0036、0.0064、0.022、0.15 mg/L(幾何平均值)						
	助剤:なし		-				
	72hErC50(実測値に基づく)=0.						
	72hNOECr(実測値に基づく)=(0.0036 mg/L					
			5mg/L区において細胞凝集が見られた。				
ミジンコ	生物種:オオミジンコ Daphnia m.	agna					
急性遊泳	試験法:化審法 TG						
阻害試験	試験方式:半止水式(密閉系)、24	時間後に換	水				
	純度:99.7%						
	試験濃度:設定濃度 9.9、15、22	、33、50%	(100 mg/L で調製した水溶性画分(WSF))				
			、0.60 mg/L(幾何平均值)				
	助剤:なし						
	48hEC50(実測値に基づく)=0.2	6 mg/L					

魚類急性 | 生物種:ヒメダカ Oryzias latipes

毒性試験 | 試験法:化審法 TG

試験方式:流水式 純度:99.7%

試験濃度:設定濃度 0.32、0.47、0.71、1.1、1.6 mg/L

実測濃度 0.24、0.35、0.57、0.87、1.2 mg/L (算術平均値)

助剤: DMF 0.10 mL/L

96hLC50 (実測値に基づく) =0.70 mg/L

また、以下の濃度群において以下のような毒性症状が認められた。

0.35 mg/L 群:完全平衡喪失(96hr 2/7)

活動度の低下 (96h 2/7)

0.57 mg/L 群:表層集中(72h1/7)

完全平衡喪失(48hr 3/7、72hr 3/7、96hr 4/6) 部分的平衡喪失(48hr 1/7、72hr 2/7、96hr 2/6) 活動度の低下(48hr 4/7、72hr 7/7、96hr 6/6)

生態影響 | 薄 判定根拠 | 急

藻類生長阻害試験において 72hErC50=0.034mg/L、72hNOECr=0.0036mg/L、ミジンコ 急性遊泳阻害試験において 48hEC50=0.26mg/L 及び魚類急性毒性試験において 96hLC50=0.70mg/L であることから、第三種監視化学物質相当。

環境調査	媒体	実施年度	検体	検出範囲	検出下限値
※ 1	水質	S55	0/36		$0.025\sim0.1(\mu \text{g/L})$
		S56	0/126		0.1(μg/L)
	底質	S55 S56	9/36 0/126	0.0044~0.04	0.0013 \sim 0.02(μ g/g-dry) 0.005(μ g/g-dry)
	魚類	S56	0/123	_	0.005(μg/g-wet)

備考 ※1 S56、57版「化学物質と環境」(環境省環境保健部環境安全課)

対水溶解度: 60mg/L (文献值、25℃)

	物質審査シート・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・						
官報公示 整理番号	4-575 CAS No. 91-17-8						
判定結果	生態影響 第三種監視化学物質相当						
名称	名 称:ビシクロ [4, 4, 0] デカン						
構造式等							
外観	無色液体						
分解性 蓄積性	難分解性 高濃縮性でない						
藻類生長阻害試験	= p, i= v = session content of s						
阻古叫歌	試験法:化審法 TG(2006) 培養方式:振とう培養(密閉系)						
	神後月八・版とり指数(名別示) 純度:99.9%(trans 34.7%、cis65.2%)						
! . 	試験濃度:設定濃度 12、20、35、59、100% (10 mg/L で調製した水性画分(WAF))						
	実測濃度 0.0078、0.0086、0.015、0.026、0.051 mg/L (幾何平均值)						
	助剤:なし						
	72hErC50(実測値に基づく)>0.051 mg/L						
	72hNOECr(実測値に基づく) = 0.015 mg/L						
	※全濃度区で細胞凝集が見られた。						
	※培地への溶解度(23±1℃): 0.96 mg/L						
ミジンコ							
急性遊泳	試験法:化審法 TG						
阻害試験	試験方式:半止水式(密閉系)、24 時間後に換水						
	純度:99.9%(trans 34.7%、cis65.2%) 試験濃度:設定濃度 9.5、17、31、56、100%(10 mg/L で調製した水性画分(WAF))						
	実測濃度 0.051、0.089、0.16、0.33、0.75 mg/L(幾何平均值)						
	助剤:なし						
	48hEC50(実測値に基づく) =0.23 mg/L						
	※試験用水への溶解度(20±1℃): 0.81 mg/L						
魚類急性	生物種:ヒメダカ Oryzias latipes						
毒性試験	試験法:化審法 TG						
	試験方式:半止水式(密閉系)、24時間毎に換水						
	純度:99.9%(trans 34.7%、cis65.2%)						
	試験濃度:設定濃度 9.5、17、31、56、100% (10 mg/L で調製した水性画分(WAF)) 宇測濃度 0.034 0.050 0.12 0.10 0.47 mg/L (終何平均徳)						
	実測濃度 0.034、0.059、0.12、0.19、0.47 mg/L (幾何平均値) 助剤:なし						
	96hLC50(実測値に基づく)=0.37 mg/L						
3	※試験用水への溶解度(24±1℃): 0.85 mg/L						

生態影響 判定根拠	藻類生長阻害試験において 72hNOECr=0.015mg/L、ミジンコ急性遊泳阻害試験において 48hEC50=0.23mg/L 及び魚類急性毒性試験において 96hLC50=0.37mg/L であることから、第三種監視化学物質相当。				
環境調査	媒体	実施年度	検体	検出範囲	検出下限値
※ 1	水質	S59	0/18	_	$0.02\sim 0.1 (\mu \text{ g/L})$
	底質	S59	0/18		$0.005 \sim 0.022 (\mu \text{ g/g-dry})$
	魚類		.	_	
環境調査	水質	S59	0/18	_	$0.01 \sim 0.07 (\mu \text{ g/L})$
※ 2	底質	S59	4/18	0.006~0.181	$0.002 \sim 0.016 (\mu \text{ g/g-dry})$
	魚類	-		—	<u> </u>
備考	※1 S60版「化学物質と環境」(環境省環境保健部環境安全課)cis 体の測定結果 ※2 S60版「化学物質と環境」(環境省環境保健部環境安全課)trans 体の測定結果 蒸気圧:1 mmHg(23℃)				

以付化子	M A H L							
官報公示 整理番号	5-724			CAS No.	504-24-5			
判定結果	生態影響 第三種監視化学物質相当							
名称	名 称:	4ーアミノ	ピリジン					
構造式等								
				N()	\longrightarrow NH ₂			
外観		い赤褐色微紅	細結晶					
分解性 蓄積性	難分解性 高濃縮性	でたい						
藻類生長			ah n ani alla	subcapitata				
阻害試験		<i>Pseudokir</i> 化審法 TG		suocapitata				
		:振とう培養	-					
	純度:99.							
	試験濃度			5.6, 12, 27 5.6, 12, 27	、60 mg/L 、60 mg/L(幾	(可以均)		
	助剤:な		1.2, 2.0,	0.0, 12, 27	、 oo mg/L (及	四半均但)		
	1	0(設定値に		~				
7.252.77		Cr(設定値						
ミジンコ 急性遊泳		オオミジン: V案注 TC	□ <i>Daphnia</i>	magna				
阻害試験	試験方式							
	純度:99.							
	試験濃度			7.5, 15, 30				
	 助剤:な		2.0, –,	-, -, -,	62 mg/L(幾何	平均値)		
		(設定値に	基づく)=	15 mg/L				
魚類急性	生物種:	ヒメダカ Ол	yzias latip	es				
毒性試験	試験法:化審法 TG 試験方式・光ルルズ 48 時間後に増北							
		試験方式:半止水式、48 時間後に換水 純度:99.8%						
		試験濃度:設定濃度 0.93、1.3、1.8、2.6、3.6、5.0 mg/L						
	ᄪᅹᆓᆔᆠᆡ	実測濃度 0.99、-、-、-、5.2 mg/L(幾何平均值)						
	助剤:なし 96bLC50	ン (設定値に	其づく) = '	3.4 mg/I				
	JOHLOGO		坐ノベルー	0.4 mg/L				
				下のような毒性	生症状が認められ	nた。		
	_	群:出血()						
	2.0 mg/L	群:出血() · 部分的 [。]	24hr 1/10) 平衡喪失(2	24h1/10)				
生態影響	魚類急性素				/L であること	から、第三種監視化学物質相		
判定根拠	当。			8				
環境調査	媒体	実施年度	検体	検出	出範囲	検出下限値		
 	水質	S58	0/30	_		$0.1 \sim 3(\mu \text{ g/L})$		
L	底質	S58	0/30			$0.005 \sim 0.12 (\mu \text{g/g-dry})$		

	魚類				
備考	※1 S59 対水溶解B pKa:9.1	度: 易溶	物質と環境」 (化学大辞』	(環境省環境保健部環境安全 典)	課)

官報公示	3-907 CAS No. 615-58-7					
整理番号						
判定結果	生態影響 第三種監視化学物質相当					
名称	名 称:2,4-ジブロモフェノール					
構造式等						
	OH					
	Br					
外観	Br Br Br Br					
分解性	難分解性					
蓄積性	高濃縮性でない					
藻類生長	生物種: Pseudokirchneriella subcapitata					
阻害試験	試験法:化審法 TG(2003)					
i.	培養方式:振とう培養					
	純度:98.4%					
	試験濃度:設定濃度 0.10、0.32、1.0、3.2、10 mg/L					
	実測濃度 0.031、0.10、0.35、1.0、4.0 mg/L(幾何平均値)					
	になり					
	72hErC50(実測値に基づく)=1.1 mg/L 72hNOECr(実測値に基づく)=0.10 mg/L					
	72HNOECF (美側値に基プト) = 0.10 mg/L					
	 ※1.0、4.0mg/L 群において細胞膨張、1.0、0.35mg/L 群において細胞凝集が見られた。					
	※72hNOECr は正確には 0.101 mg/L である。					
ミジンコ	生物種:オオミジンコ Daphnia magna					
急性遊泳	試験法:化審法 TG					
阻害試験	試験方式:止水式					
	純度:98.4%					
	試験濃度:設定濃度 0.38、0.69、1.2、2.2、4.0 mg/L					
	実測濃度 0.36、0.66、1.2、2.4、4.3 mg/L(幾何平均値) 助剤:なし					
	- 助剤・なじ 48hEC50(設定値に基づく)=2.1 mg/L					
	10H1000 (K人間に坐フ (/ 一2.1 Hg/L					

|魚類急性 | 生物種:ヒメダカ Oryzias latipes

毒性試験 | 試験法: 化審法 TG

試験方式:半止水式、24時間毎に換水

純度:98.4%

試験濃度:設定濃度 0.91、1.8、2.4、3.1、4.0、5.2 mg/L

実測濃度 0.87、1.8、2.2、2.9、3.8、5.0 mg/L (幾何平均值)

助剤:なし

96hLC50(設定値に基づく)=3.6 mg/L

また、以下の濃度群において以下のような毒性症状が認められた。

1.8 mg/L 群:部分平衡喪失(24h1/8)

活動度の低下 (24hr 1/8)

2.4 mg/L 群:表層集中(24hr 4/8、48h1/8、72hr 1/8、96hr 2/8)

完全平衡喪失(24hr 1/8、48h1/8、72hr 1/8、96hr 1/8)

部分平衡喪失(24hr 2/8、48h1/8、72hr 1/8)

活動度の低下(24hr 4/8、48h2/8、72hr 2/8、96hr 2/8)

3.1 mg/L 群:表層集中(24hr 6/8、48h6/8、72hr 7/8、96hr 6/8)

完全平衡喪失(24hr 5/8、48h6/8、72hr 6/8、96hr 5/8) 部分平衡喪失(24hr 3/8、48h2/8、72hr 2/8、96hr 2/8) 活動度の低下(24hr 8/8、48h8/8、72hr 8/8、96hr 7/8)

嗜眠状態(96h1/8)

生態影響 | 藻類生長阻害試験において 72hErC50=1.1mg/L、72hNOECr=0.10mg/L 及び魚類急性毒判定根拠 | 性試験において 96hLC50=3.6mg/L であることから、第三種監視化学物質相当。

備考 対水溶解度: 1.9×10³ mg/L(15℃)(SRC PhysProp Database)、易溶(化学大辞典)

⇔ +π /\ ~						
官報公示	3-290 CAS No. 634-93-5					
整理番号						
判定結果	生態影響 第三種監視化学物質相当					
D The	A # . 0 4 C 11 b = = = 11)					
■名称 ■構造式等	名 称:2,4,6ートリクロロアニリン					
	CI					
	/ ^{CI}					
]						
	$CI \longrightarrow (()) \longrightarrow NH_2$					
外観	State CI St					
分解性	難分解性					
蓄積性	高濃縮性でない					
藻類生長						
₩ 開 と 開 と 開 と に に に に に に に に に に り に り に り に り に り	生物種: Pseudokirchneriella subcapitata					
阻音叫歌	試験法:化審法 TG(2003)					
	培養方式:振とう培養					
	純度:99.9%					
	試験濃度: 設定濃度 0.30、0.95、3.0、9.5、30% (100 mg/L で調製した水溶性画分(WSF)) 実測濃度 0.069、0.23、0.71、2.5、7.5 mg/L (幾何平均値)					
	美側優及 0.069、0.23、0.71、2.5、7.5 mg/L (幾何平均値) 助剤:なし					
	72hErC50(実測値に基づく)=3.7 mg/L					
	72hNOECr(実測値に基づく)=0.069 mg/L					
	- 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					
	※7.5mg/L 群において細胞凝集が見られた。					
ミジンコ	生物種:オオミジンコ Daphnia magna					
急性遊泳	試験法:化審法 TG					
阻害試験	試験方式:半止水式、24 時間後に換水					
	純度:99.9%					
	試験濃度:設定濃度 0.16、0.34、0.75、1.7、3.6、8.0 mg/L					
	実測濃度 0.14、0.31、0.69、1.5、3.3、6.8 mg/L(幾何平均値)					
	助剤:なし					
	48hEC50(実測値に基づく) =4.3 mg/L					

魚類急性 | 生物種:ヒメダカ Oryzias latipes

毒性試験 | 試験法: 化審法 TG

試験方式:半止水式、24時間毎に換水

純度:99.9%

試験濃度:設定濃度 0.97、2.9、4.1、5.7、8.0 mg/L

実測濃度 0.88、2.7、3.8、5.4、7.5 mg/L (幾何平均值)

助剤:なし

96hLC50 (実測値に基づく) =5.3 mg/L

また、以下の濃度群において以下のような毒性症状が認められた。

2.7 mg/L 群:表層集中(24hr 3/10、48h5/10、72hr 7/10、96hr 7/10)

完全平衡喪失(48h3/10、72hr 3/10、96hr 3/10)

部分平衡喪失(72hr 1/10、96hr 1/10)

活動度の低下(48h3/10、72hr 4/10、96hr 4/10)

3.8 mg/L 群:表層集中(24hr 6/10、48h6/10、72hr 4/6、96hr 6/6)

完全平衡喪失(24h5/10、48h5/10、72hr 3/6、96hr 5/6)

部分平衡喪失(24hr 2/10、48hr 2/10、96hr 1/6)

活動度の低下 (24h7/10、48h7/10、72hr 3/6、96hr 6/6)

生態影響判定根拠

構造中に芳香族アミンを有しかつミジンコ急性遊泳阻害試験において 48hEC50 = 4.3mg/L、藻類生長阻害試験において 72hNOECr=0.069mg/L 及び魚類急性毒性試験において 96hLC50=5.3mg/L であることから、第三種監視化学物質相当。

環境調査	媒体	実施年度	検体	検出範囲	検出下限値
※ 1	水質	S56	0/15	_	$0.001\sim0.005(\mu \text{ g/L})$
	底質	S56	0/15	_	$0.0002\sim 0.001 (\mu \text{g/g-dry})$
	魚類			_	_

備考 ※1 S57版「化学物質と環境」(環境省環境保健部環境安全課) 対水溶解度: 40 mg/L(25℃) SRC PhysProp Database

2011 10 1	物質番盆ンート ター・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
官報公示 整理番号	4-1819 CAS No. 827-52-1
判定結果	人健康影響 第二種監視化学物質相当【平成14年2月14日告示済み】 生態影響 第三種監視化学物質相当
名称 構造式等	名 称:シクロヘキシルベンゼン
外観	無色透明液体
分解性	難分解性
蓄積性	高濃縮性でない
人健康影 響判定根 拠	第二種監視化学物質相当【新規化学物質として審議済み】 ※試験結果は企業に帰属するものであるため非公開。
阻害試験	生物種: Pseudokirchneriella subcapitata 試験法: 化審法 TG(2006) 培養方式: 振とう培養(密閉系) 純度: 99.2% 試験濃度: 設定濃度 2.6、6.4、16、40、100%(100 mg/L で調製した水性画分(WAF)) 実測濃度 0.052、0.11、0.32、0.73、2.1 mg/L(幾何平均値) 助剤: なし 72hErC50(実測値に基づく)=0.69 mg/L 72hNOECr(実測値に基づく)=0.11 mg/L ※培地への溶解度(23±1℃): 4.5 mg/L
ミジンコ	生物種:オオミジンコ Daphnia magna
急性遊泳	試験法:化審法 TG
阻害試験	試験方式:止水式(密閉系)
	純度:99.2% 試験濃度:設定濃度 2.9、5.1、9.3、17、30% (100 mg/L で調製した水性画分(WAF)) 実測濃度 0.087、0.16、0.29、0.53、0.94 mg/L (幾何平均値) 助剤:なし 48hEC50 (実測値に基づく) =0.37 mg/L
	※試験用水への溶解度(20±1℃): 3.8 mg/L

| 魚類急性 | 生物種:ヒメダカ Oryzias latipes |

毒性試験 | 試験法:化審法 TG

試験方式:半止水式(密閉系)、24時間毎に換水

純度:99.2%

試験濃度:設定濃度 9.5、17、31、56、100% (100 mg/L で調製した水性画分(WAF))

実測濃度 0.25、0.46、0.83、1.5、3.0 mg/L (幾何平均值)

助剤:なし

96hLC50 (実測値に基づく) =1.2 mg/L

また、以下の濃度群において以下のような毒性症状が認められた。

0.83 mg/L 群:活動度の低下 (96hr 1/8)

※試験用水への溶解度(24±1℃): 3.9 mg/L

生態影響 判定根拠

藻類生長阻害試験において 72hErC50=0.69mg/L、ミジンコ急性遊泳阻害試験において 48hEC50=0.37mg/L 及び魚類急性毒性試験において 96hLC50=1.2mg/L であることか

ら、第三種監視化学物質相当。

備考

	初負番宜ンート
官報公示 整理番号	5-137 CAS No. 948-65-2
判定結果	生態影響 第三種監視化学物質相当
名称 構造式等	名 称: 2-フェニルインドール
 外観	
分解性	極薄い黄色結晶性粉末 難分解性
蓄積性	高濃縮性でない
藻類生長 阻害試験 	生物種: Pseudokirchneriella subcapitata 試験法:化審法 TG 培養方式:振とう培養 純度:99.6% 試験濃度:設定濃度 1.0、3.2、10、32、100% (100 mg/L で調製した水溶性画分(WSF)) 実別濃度 0.0048 0.032 0.080 0.34 11 mg/L (発展型物体)
	実測濃度 0.0048、0.022、0.089、0.34、1.1 mg/L(幾何平均値) 助剤:なし 72hErC50(実測値に基づく)=0.20 mg/L 72hNOECr(実測値に基づく)=0.022 mg/L
	※培地への溶解度(23±1℃): 1.2 mg/L
ミジンコ急性遊泳	生物種:オオミジンコ Daphnia magna
思住近休 阻害試験	試験法:化審法 TG 試験方式:半止水式、24 時間後に換水 純度:99.6%
	試験濃度:設定濃度 6.1、12、22、42、80%(100 mg/L で調製した水溶性画分(WSF)) 実測濃度 0.050、0.10、0.19、0.37、0.71 mg/L(幾何平均値) 助剤:なし
	48hEC50(実測値に基づく) =0.30 mg/L
	※試験用水への溶解度(20±1℃): 0.94 mg/L
魚類急性 毒性試験	生物種:ヒメダカ <i>Oryzias latipes</i> 試験法:化審法 TG 試験方式:半止水式、24 時間毎に換水 純度:99.6%
	試験濃度:設定濃度 7.6、12、20、31、50% (100 mg/L で調製した水溶性画分(WSF)) 実測濃度 0.080、0.13、0.21、0.35、0.58 mg/L (幾何平均値) 助剤:なし
	96hLC50 (実測値に基づく) =0.27 mg/L また、以下の濃度群において以下のような毒性症状が認められた。 0.21 mg/L 群: 体色明化 (96hr 6/7)
	※試験用水への溶解度(24±1℃): 1.2 mg/L

生態影響 判定根拠	藻類生長阻害試験において 72hErC50=0.20mg/L、72hNOECr=0.022mg/L、ミジンコ急性遊泳阻害試験において 48hEC50=0.30mg/L 及び魚類急性毒性試験において 96hLC50=0.27mg/L であることから、第三種監視化学物質相当。
備考	対水溶解度:不溶(化学大辞典)

平成 20 年度第 4 回薬事・食品衛生審議会薬事分科会化学物質安全対策部会科学物質調査会 化学物質審議会第 77 回審査部会

第80回中央環境審議会環境保健部会化学物質審査小委員会

合同審議会議事録

【第一部】

1. 日 時: 平成 20 年 7 月 25 日(金) 13:00~14:30

2. 場 所:三田共用会議所 講堂

3. 出 席(五十音順、敬称略)

薬事・食品衛生審議会薬事分科会化学物質安全対策部会化学物質調査会委員

有馬 郷司

江馬 眞(座長)

菅野 純

清水 英佑

高木 篤也

西原 力

林 真

前川 昭彦

安田 峯生

吉岡 義正

渡部 烈

化学物質審議会審査部会委員

内田 直行

北野 大(部会長)

清水 英佑

竹内 和彦

竹下 達也

田中 明人

西原 力

藤木 素士

前川 昭彦

米澤 義堯

中央環境審議会環境保健部会化学物質審査小委員会委員

菅野 純

日下 幸則

白石 寛明

田中 嘉成

田辺 信介

中杉 修身(委員長)

吉岡 義正

米元 純三

若林 明子

事務局

厚生労働省

山本化学物質安全対策室長

経済産業省

森田化学物質安全室長

環境省

戸田化学物質審査室長

他

4.議題

- 1. 前回審議結果の確認
- 2. 既存化学物質の審議等について
 - (1) 分解性・蓄積性について

- (2) 難分解性・高濃縮性判定済み(予定)の既存化学物質について
- (3) 生態影響について
- 3. その他
 - ・化審法見直しの審議状況について

○MHLW事務局 それでは、時間がまいりましたので、ただいまから「平成 20 年度第 4 回薬事・食品衛生審議会薬事分科会化学物質安全対策部会化学物質調査会」「化学物質審議会第 77 回審査部会」及び「第 80 回中央環境審議会環境保健部会化学物質審査小委員会」合同審議会を開催いたしたいと思います。

本日は、いずれの審議会も開催に必要な定足数を満たしており、それぞれの審議会は成立していることを御報告します。

また、各審議会から本日の会合への具体的伝達手続は、それぞれの省により異なりますが、化審 法第 41 条に基づく新規化学物質の判定に関する諮問が大臣よりなされている審議会もございます ので、よろしくお願いいたします。

なお、本審議会は、既存化学物質の審議と新規化学物質の審議を第一部と第二部に分けて実施し、 本日は、13時から15時30分までを第一部として既存化学物質の審議を公開で行います。

終了後、休憩を挟みまして、第二部として通常の新規化学物質等の審議を行いますので、よろしくお願いいたします。

なお、本会議室でございますが、本日 18 時までとなっておりますので、スムーズな進行に御協力いただければと思います。

また、今回から新たに参加される委員の先生がいらっしゃいますので、紹介いたしたいと思います。

経済産業省の委員でございます、田中明人先生。

- 〇田中(明)委員 田中と申します。よろしくお願いします。昨年まで製薬企業の方で 22 年間ほど合成研究をやっておりました。若輩者ですけれども、よろしくお願いいたします。
- ○MHLW事務局 ありがとうございます。

審議に入ります前に、お手元にお配りした資料の御確認を行いたいと思います。

1枚目が議事次第となっております。

資料 1-1 「平成 19年 12月 既存化学物質点検(分解・蓄積)結果資料」。

資料1-2「既存化学物質審査シート(人健康影響・生態影響)」。

資料1-3が、前回の議事録となっております。

資料 2 - 1 「平成 20 年 7 月 既存化学物質点検 (分解・蓄積) 結果資料」。

資料2-2「難分解・高濃縮性判定済み(予定)の既存化学物質の毒性評価について」。

資料2-3「既存化学物質審査シート(生態影響)」。

資料2-4「既存化学物質の生態影響に関する情報」。

資料3-1「化審法見直しの審議状況について」。

資料3-2、こちらは化審法見直しの審議状況についての第4回の論点メモ。

参考1、委員名簿。

参考2-1「監視化学物質への該当性の判定等に係る試験方法及び判定基準」。

参考2-2「水溶性ポリマーの生態毒性について」。

参考3「特定化学物質及び監視化学物質の要件及び評価のための試験項目について」。

最後が参考4「既存化学物質審査物質(生態影響)に係る分解性・蓄積性データ」でございます。 過不足等がございましたら、事務局の方へお知らせください。

本日の全体の議事進行につきましては、薬事・食品衛生審議会薬事分科会化学物質安全対策部会 化学物質調査会座長の江馬先生にお願いいたしたいと思います。

それでは、よろしくお願いします。

○江馬座長 よろしくお願いします。初めに、本日の会議の公開の是非についてお諮りしたいと思います。

各審議会の公開につきましては、それぞれ規定がございますが、本日の会議のうち第一部は、公開することにより、公正かつ中立な審議に著しい支障を及ぼすおそれがある場合、または特定な者に不当な利益もしくは不利益をもたらす恐れがある場合等、非公開とすべき場合には当たらないと考えますので、公開としたいと思いますが、よろしいでしょうか。

(「はい」と声あり)

○江馬座長 ありがとうございます。それでは本日の第一部は公開といたします。なお、公開の会議の議事録は、後ほどホームページ等で公開されますので、あらかじめ御承知おきをお願いいたします。

議題1の前回審議事項の確認につきまして、事務局から説明をお願いいたします。

- ○MHLW事務局 前回の審議結果につきましては、委員の方々の御指摘を踏まえ、資料1-1から1-3のとおり、審査シート、議事録等をとりまとめさせていただいております。御意見等がございましたら、本日の会議終了までにお申し出いただければと思います。御意見等ございませんでしたら、内部の手続が終了次第、各省のホームページ上で公開させていただきます。よろしくお願いたします。
- ○北野部会長 それでは、議題2の既存化学物質の審議に入りたいと思います。 まず、分解性・蓄積性について事務局からお願いいたします。
- ○METI事務局 それでは説明させていただきます。

まず、1ページ目、整理番号がK-1825です。こちらの物質につきまして分解度試験を行いましたところ、BODで平均0%、DOCで平均0%、HPLCで平均1%の結果となりました。

これをもちまして、判定案としまして、難分解性であると提案させていただきます。

続きまして2ページ目、濃縮度試験でございます。こちら第1濃度区で平均 0.27 倍以下、第2 濃度区で 2.7 倍以下となりましたので、高濃縮性ではないという判定案を提案させていただきます。

続きまして、4ページ目、整理番号K-1827、本物質につきまして、分解度試験を行いましたところ、BODで平均0%、DOCで平均2%、HPLCで平均90%となりました。

本物質は、加水分解し、変化物が生じましたので、判定案としまして難分解性ということを提案させていただきます。

続きまして、蓄積性でございますけれども、こちらは水オクタノールの分配係数から類推いたしました。変化物が生じましたけれども、極性が一番低い被験物質で試験をしましたところ、logPowの値が 2.28 となりましたので、判定案としまして、高蓄積性ではないと提案させていただきます。

続きまして、もう一物質、7ページです。整理番号がK-1828、本物質につきまして、分解度試験を行いましたところ、BODで平均0%、HPLCで平均1%となりましたので、判定案としまして難分解性であると提案させていただきます。

続きまして、蓄積性ですけれども、こちらも水オクタノール分配係数から類推いたしました。本物質の logPow の値が 3.02 となりましたので、こちら判定案としまして、高濃縮性ではないと提案 いたします。

以上、3物質について御審議をよろしくお願いいたします。

○北野部会長 ありがとうございました。それでは、ただいまの御説明について、御質問または御意見はありますでしょうか。いずれも難分解性かつ高濃縮性でないという判定ですが、よろしいでしょうか。

(「はい」と声あり)

- ○北野部会長 ありがとうございました。それでは、事務局案どおりとさせていただきます。 次をお願いします。
- \bigcirc METI事務局 続きまして、資料 2-1 の 10 ページ、整理番号 143B、名称、構造は記載の とおりでございます。

本物質につきましては、平成 19 年 10 月 26 日の審議会におきまして、難分解性との判定をいただいております。

本物質の蓄積性につきまして、濃縮度試験を行なった結果でございますが、第1濃度区が3倍以下、第2濃度区が24倍以下といった結果が得られております。

以上の結果より、本物質につきましては、判定案を高濃縮性ではないとさせていただいております。

続きまして、12ページ、整理番号 1201C、名称、構造は記載のとおりでございます。

本物質につきましては、平成 19 年 10 月 26 日の審議会におきまして、難分解性との判定をいただいております。

本物質の濃縮度試験の結果でございますが、第1濃度区が1,190倍、第2濃度区が1,160倍となっております。

また、半減期でございますけれども、第1濃度区、第2濃度区ともに1日となっております。 以上の結果より、判定案といたしましては、高濃縮性ではないとさせていただいております。 続きまして、15ページ、整理番号 1201D、名称、構造は記載のとおりでございます。

本物質につきましても、平成 19 年 10 月 26 日の審議会で難分解性との判定をいただいております。

濃縮度試験の結果でございますけれども、第1濃度区が1,100倍、第2濃度区が866倍となっております。

また、半減期でございますが、第1 濃度区が 0.7 日、第2 濃度区が 0.9 日といった結果が得られています。

以上の結果より判定案といたしまして、高濃縮性ではないとさせていただいております。

以上、3物質につきまして、御審議のほどよろしくお願いいたします。

○北野部会長 ありがとうございました。いかがでしょうか。分解性は前回に判定してもらったので、すべて高濃縮性ではないという今回の事務局案ですが、よろしいですか。

どうぞ。

○中杉委員長 判定自体はよろしいと思いますけれども、最後の2つのジクロロトルエンですけれども、魚毒性の試験の結果が 10 以下ということで、その可能性があるということと、濃縮性が若干高いということから考えると、生態毒性試験をやる優先順位が高いだろうと思いますので、これは環境省がやられるんだろうと思いますけれども、是非、次の試験対象物質の優先順位を高いところに位置づけておいていただければと思います。

○北野部会長 ありがとうございました。では、その旨、ノートしておいてください。お願いします。

ほかに御意見はよろしいでしょうか。それでは、この3物質についても事務局案どおり高濃縮性ではないという判定にさせていただきます。

 \bigcirc METI事務局 それでは、続きまして、18 ページ、整理番号 1760、名称、構造は記載のとおりでございます。

本物質につきましては、平成 18 年 7 月 21 日の審議会におきまして難分解性との判定をいただいております。

本物質の蓄積性につきまして濃縮度試験を行なった結果でございますが、第1濃度区で3万2,000倍、第2濃度区で3万3,000倍という結果が得られました。

この結果より、事務局判定案といたしましては、高濃縮性とさせていただいております。 本物質についての御審議、よろしくお願いいたします。

○北野部会長 ありがとうございます。いかがでしょうか。かなりの濃縮倍率ですけれども、判定としては、高濃縮性ということで、よろしいですか。

それでは、事務局案どおり高濃縮性ということにします。

どうぞ。

- ○中杉委員長 同じように、高濃縮性でよろしいんですけれども、魚のLC50が10を下回っているということになると、少し先の毒性といいますか、場合によっては一監になることになるんですけれども、その次の試験、生物の方ですが、少し留意をしておく必要があるだろうと思います。
- ○北野部会長 ありがとうございます。ほかに御意見はよろしいですか。

それでは、分解・濃縮性についての判断審査は、これで終わります。

- ○江馬座長 次に議題2の(2)です。難分解性・高濃縮性判定済みの既存化学物質について、事務局から説明をお願いします。
- \bigcirc MHLW事務局 御説明いたします。資料 2-2 をごらんください。A 3 の横長の 1 枚紙になっております。

こちらには、ただいま高濃縮判定を受けました物質について毒性情報を記載させていただいております。

真ん中の辺りに、毒性情報の項目というところがございますが、現時点で事務局の方で入手している情報はございませんでしたので、なしということにさせていただいております。

したがいまして、判定案といたしましては、ヒトへの長期毒性についての評価案、高次捕食動物への長期毒性についての評価案につきまして、第一種特定化学物質に該当するかどうか判断するための十分な情報がないことから、第一種監視化学物質相当であるとさせていただいております。

御審議のほど、よろしくお願いいたします。

○江馬座長 ただいまの内容につきまして、コメント等ございましたら、お願いします。よろしいでしょうか。

よろしいようでしたら、本物質につきましては、第一種監視化学物質相当ということにしたいと 思います。

どうもありがとうございました。

次に、議題2の(3)の生態影響について事務局から説明をお願いします。

○M○E事務局 それでは、資料2-3及び資料2-4に基づきまして、生態影響に関して御説明させていただきます。

審査シート1ページ、名称、構造式等は記載のとおりでございます。

本物質につきまして、生態影響に関する4つの試験が実施されております。

結果といたしましては、魚類急性毒性試験におきまして、96 時間LC50 が 7.8 との結果がございます。

生態影響の判定根拠といたしましては、魚類急性毒性試験において、96 時間LC50 が 7.8mg/Lであることから、第三種監視化学物質相当とさせていただいております。

御審議のほどよろしくお願いいたします。

- ○江馬座長 ただいまの説明につきまして、コメント等がございましたらお願いいたします。 どうぞ。
- ○吉岡委員 直接結論に影響するような部分ではないとは思いますが、藻類生長阻害試験のところで、48 時間の ErC50 という値を出していらっしゃいます。通常 72 時間でやりますけれども、これが 48 時間になっているのは、48 時間から 72 時間の増殖速度が他と比べて低くなっているため、それでカットしたということでしょうか。
- ○MOE事務局 そのようにさせていただきました。
- ○吉岡委員 ありがとうございました。
- ○江馬座長 そのほかよろしいでしょうか。よろしいようでしたら、生態影響は、事務局案どおり とさせていただきます。

次の説明をお願いいたします。

○M○E事務局 続きまして審査シートの3ページでございます。

名称、構造式等は記載のとおりでございます。本物質につきましても、4種の試験が実施されております。

藻類成長阻害試験において、72 時間 ErC50 が 0.6、魚類急性毒性試験において 96 時間LC50

が 2.0 との結果が得られております。生態影響判定根拠は、藻類生長阻害試験において、72 時間 ErC50 が 0.6mg/L 及び魚類急性毒性試験において、96 時間 LC50 が 2.0mg/L であることから、第三種監視化学物質相当とさせていただいております。

御審議よろしくお願いいたします。

- ○江馬座長 ただいまの物質につきましてコメントがありましたらよろしくお願いいたします。 どうぞ。
- ○吉岡委員 試験方法及び試験結果とも特に問題なく行われておりますので、事務局の提案どおりでよろしいかと思います。
- ○江馬座長 ありがとうございます。そのほかよろしいでしょうか。 よろしいようでしたら、本物質につきましても事務局案とおりの判定とさせていだきます。 次の説明をお願いいたします。

御審議のほど、よろしくお願いいたします。

- ○江馬座長 ただいまの物質につきましてコメント等ございましたら、よろしくお願いいたします。 どうぞ。
- ○吉岡委員 試験方法、試験結果とも、特に問題がないと考えられます。したがいまして事務局の 提案とおりでよろしいかと思います。
- ○江馬座長 そのほかよろしいでしょうか。よろしいようでしたら本物質につきましても事務局案 どおりとさせていただきます。どうもありがとうございます。
- ○中杉委員長 それでは続きまして、4-1656、資料の説明をお願いいたします。
- ○M○E事務局 審査シート7ページでございます。

名称、構造式は、記載のとおりでございます。

本物質につきましても、4種の試験が実施されております。

生態影響判定根拠でございますが、藻類生長阻害試験において 72 時間 ErC50 が 0.14mg/L、72 時間 NOECr が 0.011mg/L あることから、第三種監視化学物質相当とさせていただいております。 御審議のほどよろしくお願いいたします。

- ○中杉委員長 今の事務局の説明に対してコメントがございましたらお願いいたします。
 どうぞ。
- ○吉岡委員 今の7ページの試験のうちで、ミジンコ繁殖阻害試験というのがございます。このときに 21 日の NOEC が 0.22 となっておりますけれども、この 0.22 の濃度区におきましては、親の方が 2 割死んでいるということがございます。それで確かに繁殖という意味では、NOEC がこの濃

度になるんですけれども、もし親の死亡ということを考え合わせますと、20%というのはドーズレスポンスもある形の数字でございますので、もう一段下にしてはいかがかと思います。

以上です。

- ○中杉委員長 事務局よろしいですか。もう一段下の濃度に NOEC を持ってくるということですが。
- ○MOE事務局 御異論がございませんでしたら、そのようにいたしますが。
- ○中杉委員長 いかがでしょうか。ほかに御意見がないようでしたらここの部分を、0.10 ということになりますでしょうか。そこの NOEC を 0.10 というふうに修正をさせていただいて、判定は事務局案とおりの判定でよろしいでしょうか。
- ○MOE事務局 そうしますと、NOEC が 0.10 ということで、こちらのデータも三監の根拠ということになりますので、そのようにさせていただいてもよろしいでしょうか。
- ○中杉委員長 それでよろしいでしょうか。では、判定根拠のところの記載が少し変わりますけれ ども、判定案としては第三種監視化学物質相当ということでよろしいでしょうか。

それでは、事務局案どおりの判定とさせていただきます。

続きまして、3-4173です。説明をお願いいたします。

○M○E事務局 審査シート9ページでございます。

名称、構造式は記載のとおりでございます。

本物質につきましても4種の試験が実施されております。また、本物質は構造式中に、芳香族アミンを有しておりますことから、生態影響判定根拠といたしましては、構造中に、芳香族アミンを有し、かつ、ミジンコ急性遊泳阻害試験において、48 時間 EC50 が 2.9mg/L、ミジンコ繁殖阻害試験において、21 日間 EC50 が EC50

御審議よろしくお願いいたします。

- ○中杉委員長 今の御説明に対してコメントいただけはと思います。いかがでございましょうか。
- ○吉岡委員 藻類生長阻害試験において、濃度減少が非常に著しい化合物でございますが、試験法 そのものとしては間違っているわけではないと思いますので、事務局の御提案とおりでよろしいか と思います。
- ○中杉委員長 それでは、ほかに御意見はございますでしょうか。よろしいでしょうか。

ほかに御意見がないようでしたら、3-4173 についても事務局案とおり、第三種監視化学物質という判定をさせていただきます。

それでは続きまして、4-1709です。

○M○E事務局 審査シート 11 ページございます。

名称、構造式は記載のとおりでございます。

本物質につきまして4種の試験が実施されておりまして、魚類において96時間LC50、2.7の結果がありますので、生態影響判定根拠としては、魚類急性毒性試験において、96時間LC50が2.7mg/Lであることから、第三種監視化学物質とさせていただいております。御審議のほどよろし

くお願いいたします。

- ○中杉委員長 それでは、コメントをお願いいたします。
- ○吉岡委員 試験法、試験結果とも特に問題ないと思います。したがって、事務局の御提案どおりでよろしいかと思います。
- ○中杉委員長 ほかにいかがでしょうか。ほかの先生方よろしいでしょうか。

ほかに御意見がないようですので、この物質につきましても事務局案とおり、第三種監視化学物質という判定をさせていただきます。どうもありがとうございました。

- ○北野部会長 それでは次に、5-6262 をお願いいたします。
- ○MOE事務局 審査シート 13 ページをごらんください。

名称、構造式は記載のとおりでございます。

ミジンコ繁殖阻害試験を含めた4種の試験が実施されております。

14 ページの魚類急性毒性試験の 96 時間L C 50 は正確には 10. 1mg/L でございますが、毒性値は有効数値 2 ケタで表記することとしているため、ちょうど三監のクライテリアを満たすこととなります。また、95%信頼区間は $8.3\sim11.9mg/L$ です。

生態影響判定根拠でございますが、魚類急性毒性試験において 96 時間LC50 が、10mg/L であることから、第三種監視化学物質相当とさせていただいております。御審議よろしくお願いいたします。

○北野部会長 ありがとうございました。ただいまの御説明について御意見、コメントはございま すでしょうか。

お願いいたします。

○吉岡委員 先ほど事務局からお話がありましたように、細かく言いますと 10 を上回っております。しかしながら、設定濃度で計算しますと、こうなりますが、実測濃度で計算をいたしますと、下がるという形になります。非常に微妙なところで、プラマイ 20%ぐらいのところの誤差といいますか、計算上の違いは出てくる。しかし、少なくとも四捨五入して、10 のところに落ちつくということですから、事務局の提案を支持したいと思います。

以上です。

- ○北野部会長 ありがとうございます。ほかに御意見ございますか。よろしいでしょうか。 どうぞ。
- ○中杉委員長 そのほかに7のところでも、異常遊泳という症状が表われているということも含めて考えたら、事務局案どおりでよろしいかなと思います。
- ○北野部会長 ありがとうございました。ほかによろしいですか。 それでは、事務局案どおり第三種監視化学物質相当としたいと思います。 次をお願いします。
- ○M○E事務局 審査シート 15 ページでございます。

名称、構造式は記載のとおりでございます。

藻類生長阻害試験及びミジンコ急性遊泳阻害試験は、100mg/L で調製した水溶性画分、16 ペー

ジの魚類急性毒性試験は、助剤を用いて試験を実施しており、いずれも三監相当の毒性が得られております。

生態影響判定根拠でございますが、藻類生長阻害試験において 72 時間 ErC50 が、0.034mg/L、72 時間 NOECr が 0.0036mg/L、ミジンコ急性遊泳阻害試験において 48 時間 EC50 が 0.26mg/L 及び魚類急性毒性試験において 96 時間 LC50 が 0.70mg/L であることから、第三種監視化学物質相当とさせていただいております。御審議よろしくお願いいたします。

- ○北野部会長 ありがとうございました。いかがでしょうか。 どうぞ。
- ○吉岡委員 16ページの、魚類急性毒性試験におきまして、試験濃度が算術平均という形で、実測 濃度を示しております。それ以外のところは幾何平均と示しておりますけれども、魚類急性毒性試 験の値を見てみますと、前後で差がない値を使っておりますので、特に問題はないかと思います。 したがいまして、事務局の提案どおりでよろしいかと思います。
- ○北野部会長 ありがとうございます。ほかに御意見はございますか。 どうぞ。
- ○中杉委員長 判定案はそうとおりでよろしいと思いますが、環境調査結果が出ておりますけれども、不検出ということになっております。ただ、藻類の生長阻害試験の結果、かなり濃度が低いということから考えると、この検出下限で十分なのかどうか、少し検討する必要があると思います。 環境調査の感度を上げて環境調査をするということも少し検討していただく必要があるかと考

えています。

- ○北野部会長 ありがとうございます。そのとおりだと思います。
- ○M○E事務局 了解しました。
- ○北野部会長 ほかに御意見はありますでしょうか。よろしいですか。それでは、この物質についても、事務局案どおりとさせていただきます。ありがとうございます。

4-575 をお願いします。

○M○E事務局 審査シート 17 ページでございます。

名称、構造式は記載のとおりでございます。

被験物質を、シス体とトランス体の混合物とし、水性画分で試験を実施しております。いずれも 三監相当の毒性が得られております。

18 ページの生態影響判定根拠でございますが、藻類生長阻害試験において 72 時間 NOECr が 0.015mg、ミジンコ急性遊泳阻害試験において 48 時間EС50 が 0.23mg/L 及び魚類急性毒性試験 において 96 時間LС50 が 0.37mg/L であることから、第三種監視化学物質相当とさせていただい ております。御審議よろしくお願いいたします。

- ○北野部会長 ありがとうございました。ただいまの御説明ついて御意見はありますでしょうか。 どうぞ。
- ○吉岡委員 非常に単純な構造なので、どうしてこんなに毒性が高いのかと思って、QSARをやってみたんですが、やはりある程度高く出ます。ほとんど logP で効いてくるという形になってお

- りますので、こういうデータなのかと見ております。事務局の提案どおりでよろしいかと思います。 以上です。
- ○北野部会長 ありがとうございました。ほかに御意見はございますか。よろしいでしょうか。 それでは、この物質についても事務局案どおりとさせていただきます。ありがとうございました。
- ○江馬座長 次の724について、説明をお願いいたします。
- ○MOE事務局 審査シート 19 ページでございます。

名称、構造式は記載のとおりでございます。

本物質は、水に易溶であり、魚類急性毒性試験で三監相当の毒性が得られております。

生態影響判定根拠でございますが、魚類急性毒性試験において 96 時間L C 50 が 3.4mg/L であることから、第三種監視化学物質相当とさせていただいております。御審議よろしくお願いいたします。

- ○江馬座長 コメント等ございましたらお願いいたします。
- ○吉岡委員 ミジンコ及び魚類急性毒性試験におきまして、実測濃度というのが最低、最高の部分 にだけにとどまっております。これは私の希望でございますけれども、少なくともL C 50 の辺りの 濃度というのは測定をしていただきたかったと思っております。事務局の提案どおりでよろしいか と思います。

以上です。

○江馬座長 そのほかよろしいでしょうか。よろしいようでしたら、本物質につきましては事務局 案どおりとさせていただきます。

どうぞ。

- ○中杉委員長 今のあれですけれども、魚類急性毒性試験のところで、設定値に基づいて、96 時間 L C 50 値が 3.4 ですけれども、上の試験濃度の設定のところでは 2.6、3.6 になっている。
- ○M○E事務局 こちらはLC50値ですので、統計処理をしております。
- ○中杉委員長 ごめんなさい。了解しました。
- ○江馬座長 ほかにございますか。では、説明をお願いします。
- ○M○E事務局 審査シート 21 ページございます。

名称、構造式は記載のとおりでございます。

本物質は水に易溶であり、藻類生長阻害試験及び魚類急性毒性試験において、三監相当の毒性が 得られております。

なお、藻類生長阻害試験の 72 時間 NOECr は、正確には 0.101mg/L でございますが、毒性値を有効数字 2 けたで表記することとしているため、ちょうど三監のクライテリアを満たすこととなります。

生態影響判定根拠、22 ページでございますが、藻類生長阻害試験において、72 時間 ErC50 は 1.1 mg/L、72 時間 NOECr が 0.10 mg/L 及び魚類急性毒性試験において、96 時間 LC50 が 3.6 mg/L であることから、第三種監視化学物質相当とさせていただいております。御審議よろしくお願いいたします。

- ○江馬座長 ただいまの物質につきまして、コメントがございましたらお願いします。 どうぞ。
- ○吉岡委員 この物質では、ミジンコの急性毒性は、生態影響判定根拠のところに挙がってきませんけれども、相当低い値ということを言っておきたいと思います。そのほかは事務局の提案どおりでよろしいかと思います。
- ○江馬座長 そのほかよろしいでしょうか。よろしいようでしたら、本物質につきましても事務局 案どおりの判定とさせていただきます。

次に、290につきまして説明をお願いいたします。

○M○E事務局 審査シート 23 ページでございます。

名称、構造式は記載のとおりでございます。

本物質は、構造中に芳香族アミンを有しております。対水溶解度は 40mg/L であり、水溶性画分または水溶液で試験が実施されております。

生態影響判定根拠、24ページでございますが、構造中に芳香族アミンを有し、かつミジンコ急性遊泳阻害試験において 48 時間 EC 50 が 4.3mg/L、藻類生長阻害試験において 72 時間 NOECr が 0.069mg/L 及び魚類急性毒性試験において 96 時間 L C 50 が 5.3mg/L であることから、第三種監視化学物質相当とさせていただいております。御審議よろしくお願いいたします。

- ○江馬座長 本物質につきまして、コメントがございましたらよろしくお願いいたします。
- ○吉岡委員 この物質は溶解度 30 ですけれども、100mg で調製した濃度区を行っていたり、あるいは魚類急性毒性試験におきましては、結果が一部逆転しているということが認められる部分がございます。しかしながら試験法及び試験結果とも容認しうるものと考えますので、事務局の御提案どおりで、よろしいかと思います。
- ○江馬座長 ありがとうございました。そのほか、よろしいでしょうか。

よろしいようでしたら、本物質につきましても、事務局案とおりの判定とさせていただきます。

- ○中杉委員長 それでは、続きまして、4-1819です。よろしくお願いいたします。
- ○M○E事務局 審査シート 25 ページになります。

名称、構造式等は記載のとおりです。

三種の試験の結果は、記載されているとおりです。

生態影響判定根拠としましては、26 ページ、藻類生長阻害試験において 72 時間 ErC50 が、0.69mg/L、ミジンコ急性遊泳阻害試験において 48 時間 ErC50 が 0.37mg/L 及び魚類急性毒性試験において 96 時間 ErC50 が 1.2mg/L であることから、第三種監視化学物質相当とさせていただいております。御審議のほどよろしくお願いいたします。

- ○中杉委員長 コメントをお願いいたします。
- ○吉岡委員 魚類急性毒性試験において、これはたしか密閉系で行われると思いますので、確認の上、密閉系であれことならば、その密閉系であることを追加していただきたいと思います。

あと、判定根拠のところは事務局の提案どおりでよろしいかと思います。

○中杉委員長 ほかに御意見はございますでしょうか。よろしいでしょうか。それでは、この物質

についても事務局案どおり、三監相当とさせていただきます。

次に、5-137です。御説明をお願いいたします。

○M○E事務局 審査シート 27 ページになります。

名称、構造式等は記載のとおりでございます。

こちらも3種の試験を行っており、そちらの結果は記載のとおりです。

28 ページ、生態影響判定根拠ですが、藻類生長阻害試験において 72 時間 ErC50 が 0.20mg/L、72 時間 NOECr が 0.022mg/L、ミジンコ急性遊泳阻害試験において、48 時間 ErC50 が 0.3mg/L 及び魚類急性毒性試験において 96 時間 LC50 が 0.27mg/L であることから、第三種監視化学物質相当とさせていただいております。御審議お願いいたします。

- ○中杉委員長 コメントをお願いいたします。
- ○吉岡委員 試験法、試験結果ともに特に問題ないと思います。したがいまして、事務局の提案どおりでよろしいかと思います。
- ○中杉委員長 ほかの先生方からコメントはございますでしょうか。よろしいでしょうか。

それでは、5-137 につきましても、事務局案どおり第三種監視化学物質相当という判定をさせていただきます。

一つだけ、今回の調査結果の最初の方の物質については、ミジンコの繁殖阻害試験、これは新規については要求ではないんですが、既存にたまたま付いているので、それを審査しているということなんですが、中身を見てみると、急性遊泳阻害試験の結果に比べて、毒性が高いように思います。そこら辺のところの情報を整理して、まとめておいていただけないかと。判定をどうすべきかということで少し議論をする必要があるかもしれないと思います。ながめていてそういう感じがしましたので、事務局の方でデータの整理をお願いできればと思います。

- ○M○E事務局 了解いたしました。
- ○江馬座長 続きまして、議題3のその他になりますが、化審法見直しの審議状況について事務局から説明をお願いいたします。
- \bigcirc METI事務局 それでは御説明をいたします。資料3-1と3-2をごらんいただきますようにお願いいたします。

まず資料3-1を使いまして、化審法見直しの審議状況について御報告いたします。

御存じのとおりでございますが、本年1月 31 日の合同委員会を皮切りとして、今まで4回のワーキンググループにおいて論点整理を行いました。

今月に行われました第4回のワーキンググループにおきましては、今後の化学物質管理の在り方を委員の皆様方に御議論いただきまして、今後のさらなる議論につなげていくという状況でございます。まずは3-1に基づきまして、第1回~3回までの議論状況を御報告いたします。

まず、1回目のワーキングでございますが、テーマはライフサイクルにおける使用実態を考慮した化学物質管理でした。

具体的には、WSSD の 2020 年目標を踏まえ、高ハザードが懸念される物質への対応を担保しつつ、リスクベースでの化学物質の管理をどのように進めていくべきか、また、管理体系と安全性情

報の伝達をどのように行っていくかということです。

また、高ハザード化学物質を厳格に規制していく。一方で、POPs条約の担保という側面から見ていきますと、国際的にも認められているエッセンシャルユースをどのように化審法の中で考えていくかという点リスクの観点から懸念の高い物質をどのように適切に管理していくかという点についても議論がございました。

第2回目のワーキングは3月に行われましたが、この中でリスク評価の必要性と効率的実施方法 について議論がございました。

具体的には、今後の化審法において、リスク評価の観点から評価を行っていく場合に、必要となるデータの種類、またその収集方法、評価方法というのはどのようにあるべきかという論点です。 具体的には、下に5点書ですが、リスク評価の目的と実施についての考え方、また、暴露情報、ハザード情報の収集について議論がございました。

意見としてはリスクを評価する観点では、暴露情報が非常に重要視されますので、企業から製造 輸入数量や用途といった暴露に関連する情報を収集すべきではないかというものがありました。

また、ハザード情報の収集に関しましては想定されるリスク、暴露の程度に応じた段階的なハザード情報の収集といった案が提示されました。

また、化審法におけるリスク評価の進め方に関しましては、従前のとおり国による評価を行い、 その中で企業に必要な情報を求めていく。報告規定ですとか、現行の有害性調査指示といった指示 規定がございますが、そういった仕組みにより情報を求めていくといった形が適当なのではないか といった議論がございました。

最後に、企業秘密の取扱いに関してですが、諸外国でも同様な規制がある中で、非常に機敏な情報に関しては、適切な取扱いが必要ではないかという議論が行われております。

続きまして、第3回目のワーキングでございますが、審査に関わる議論が多い回でございました。 具体的には、新規化学物質審査制度等のハザード評価方法の在り方についてです。具体的には、 上市前のハザード評価、リスク評価に関して、環境汚染の未然防止を図りつつ、国際整合化や合理 化をはかる観点からどのような問題点や改善点があるかということでございます。

下に7点ありますが、多少詳細に御説明いたします。

1点目は、新規化学物質の事前審査制度の在り方です。こちらはハザードからリスクへという流れの中、一定のリスク評価を効果的に組み込むということについて議論が行われております。

また、2点目は、少量新規確認制度、低生産量への特例、中間物等の確認制度の在り方ですが、この中で特に議論がございましたのが少量新規の確認制度です。具体的には数量の合計が現在のところ全国合計とされておりますが、国際整合性の観点から、事業者当たりの数量を基準とすることについてどうかという議論がございました。また、現行でも事業者からの届出状況を見るに、非常に環境排出量、製造量が多いといった事例は少ないということを見ても、事業者当たりの管理にしても差し支えないのではという議論が見られる一方で、非常に複数社にわたる申出があり、制度の根幹として不適切と思われる事例がある場合は、不確認とするといった事例も考えなければならないといった指摘がございました。

3点目は、有害性の懸念の低いポリマー審査の在り方です。こちらは各国で新規届出の除外等とされている有害性懸念の低いポリマーに関して、どういった審査の在り方があるかといった点です。 具体的には、現在、OECDの下で、カナダ、アメリカ等の、PLC基準、有害性懸念の低いポリマーの基準に関してリサーチを行っており、一定の情報の不足があるという点は認めつつも、おおむねPLC基準は妥当であるという結論が見られる見込みです。そういった外国の制度も見合わせて、審査の過程において有害性懸念の低いポリマー審査というのは、一定のハザード評価の情報を減らして審査をすることも可能ではないかといった議論が行われております。

4点目は、ハザード評価結果の開示についてです。こちらについては、海外の状況を見ますと、例えばオーストラリアなどの国々では、ハザード評価の結果を開示するといった取扱いが行われております。審議会におきましても、ハザード評価結果というものに関しては広く公表していくことが必要であるといった議論が見られました。また、後発者に対する先発者の利益といったこともありまして、名前をどのように公示するかいうことに関しても併せて議論が行われております。

5番目は、審査におけるQSAR・カテゴリーアプローチの活用について議論が行われております。主な指摘としては、QSARに関しては改良されてはきておりますが、メインの手法とするにはいまだ不十分であろうという御指摘がございました。他方、現状でも活用できる部分については活用していく方向で検討すべきとする意見、また、既存点検や低生産、少量新規などの審査などから活用を検討していくべきだといった議論、各国でのQSAR・カテゴリーアプローチの活用状況にかんがみましても、補助的なところから使い始めていくべきではないかといった議論が見られております。

6点目は、環境中への残留可能性に関する考え方について議論が行われております。こちらに関しましては、良分解性の化学物質であっても、環境中に放出されて長期間残留することはほとんどないということでして、化審法はその制定時より、難分解性の性状を有する化学物質を規制の対象としておりますが、今後リスクの観点を重視した管理規制体系の構築を目指す場合、残留性物質の評価手法であるとか、残留性に関してどのように考えることが合理的かという論点に関して議論を行っております。主な指摘といたしましては、量が多ければ分解性があっても残留するといったことはあり得るという指摘があり、リスクを評価していく上では、排出量についてもきちんと把握をしていくべきだといった議論がございました。他方、懸念の高い物質について、基本的には難分解性ということで、化審法上はやっておりますので、対象外として考えていくべきではないかといったような議論も見られております。

最後は7点目、ナノマテリアルの取扱いについてです。

こちらに関しては、ナノマテリアルに関して、ナノの物質が有する性状といったものが、いまだよくわかっていないという現状に関して報告がございまして、併せて3省においてそれぞれ検討や研究が進んでいるという御報告もいたしました。

そうした上で、社会としてのナノマテリアルへの期待をつぶさないことが必要であり、他方で、ハザードリスクについてはきちんと見ていくべきである、すなわち現行の安全性研究の重要性というものが非常に強調された御指摘がございました。他方で、予防的に、後で問題が発覚することが

ないように、対応してほしいという議論も見られております。

以上、3回のワーキングの議論を踏まえまして、第4回のワーキンググループにおいて、今後の 化学物質管理の在り方について議論を行っております。

論点メモはこちらの3-2のとおりでございますが、わかりやすさのために、資料の4ページに ございます、上下になっている手続フローをごらんいただければと思います。

このページの下の方にありますのが、現行法に基づくスキームでございます。基本的にはこれは ハザードの観点から新規化学物質または既存点検の結果として二監、三監を指定し、これらの化学 物質に対して製造、輸入数量の届出を求め、これをリスク評価の対象とするというのが現行の化審 法でございます。こちらは、今まで非常に役割を果たしてきていると言えますが、他方で、ハザー ド評価が十分に出されないまま使用されている既存化学物質が多いということも事実でございま す。

他方で、これらの既存化学物質に関して、現在、既存点検やジャパンチャレンジといった取組みをやっておりますが、すべての物質についてハザード情報を新たに取得するというアプローチですと、相応の費用と時間がかかるということも踏まえまして、迅速性、効率性の観点から合理的なリスク評価のアプローチを取り入れることとして、上半分のスキームを提案しております。

上半分のスキーム図をごらんください。まず、上市後の既存化学物質という箱ですが、既存化学物質審査後公示物質、こちらを現行でいう二監、三監と同様に製造輸入数量、用途の届出を求める対象といたしまして、これらすべてをリスク評価の対象といたします。その際に、環境への暴露量、また、ハザードの既知見を踏まえて評価を行い、その結果リスクが十分に低いと判断されるもの、また逆に十分に低いと判断されないものの2つに分けまして、後者に関しては、こちらの優先評価化学物質(仮称)と書いておりますが、こちらに位置づけをいたします。優先評価化学物質に関しては、右側の矢印に従ってさらなるリスク評価の対象とするということになっております。

上と下を比べますと、改正前は、ハザードの情報が収集できるものについてハザード評価の観点から二監、三監を選定し、これをリスク評価の対象とするということですが、上の図に関しましては、まず、暴露の程度を判断するために届出を求め、その暴露から導き出される想定されるリスクの程度に応じて、さらなるハザード評価を行っていくといった段階的なアプローチを取っております。

また、新規化学物質の判定に関しましては、改正後の図では、上の左半分ということになりますが、新規化学物質の事前審査において、従来のようなハザード評価に加え、暴露の情報、予定数量から得られるリスク評価を加えて、同じようにリスクの懸念が十分に低いと判定されるものまたはそうでないと判定され、優先評価化学物質と判定されるものの2つに分かれていくということを考えております。

また、ハザード評価による一監から一特という流れは従来のまま残し、他方で、二監、三監に関しては優先評価化学物質といった観点でリスクの観点から再整理を行っていくという図を提案いたしました。

この中で、御議論として指摘をいただきましたのは、基本的には製造輸入数量を届け出ていくこ

とから、今、上市されている物質すべてについてリスク評価の対象とできることは非常に望ましい という意見がございました。他方で、届出を求めることに関してはある程度の負担がかかるという ことですので、運用においてはそのやり方についてよくよく議論をした方がよいだろうという指摘 も得られております。

また、図の詳細について、優先評価化学物質から右、二次リスク評価という丸がございますが、こちらに行くに従ってハザード情報に関して、多少細かい情報を取っていく。また、詳細用途情報の収集を企業に求め、更に得られた情報で、二次リスク評価を行う。また、最後のところは有害性調査指示ということで、現行とほとんどパラになっておりますが、長期毒性試験データなど、有害性調査指示が必要であるものについては、指示に基づく三次リスク評価を行い、最終的に、2特に該当するかどうかというのを判断するパスを残しております。

また、情報伝達に関してですが、今までどおりリスクが高いと評価された化学物質に関しましては、情報伝達をきちんとやるべきではないかという御議論。また、1回目のワーキングでも議論がございましたがこの中でハザードが高いとされた1特のようなものは、今までどおり厳格に管理されるべきであると。他方で、エッセンシャルユースなど、POPsの動向に関することについては同時に議論していこうといった議論がなされております。

簡単ではありますが、化審法の見直しに関しまして、現在の議論状況の御報告といたします。 ○江馬座長 ありがとうございます。ただいまの内容につきまして、御意見、コメント等がござい ましたらお願いいたします。

どうぞ。

- ○METI事務局 本日、もともとこの審議をお願いするに当たりまして、全体の時間が非常にタイトだという覚悟しておりましたけれども、皆様の御協力を得まして、やや時間もとれるかなと思いますので、そういう意味では今の説明は非常に駆け足でやりましたけれども、議論でどういうことが行われたかということの御質問等ございましたら、私どもの方で覚えておりますというか、整理しております範囲で、この場でお時間が許す限り御説明できるかと思いますので、よろしくお願いたします。
- ○江馬座長 若干時間がありますので、御質問等ございましたら、よろしくお願いいたします。 どうぞ。
- ○吉岡委員 1回~4回まで非常に真摯な態度で議論をされている様子がわかります。ただ、少しわかりにくいと思う点がございますが、1回~3回までというのは、4回のための論点を議論したのであるのか。1回~3回までそれぞれテーマが与えられているんですね。そのテーマに対して、ワーキングはどのように結論づけたのかという部分が非常にわかりにくくなっております。そういう点、議事録等を見てみますと、ほとんど言いっ放しの形を取っているんですけれども、その点についてはいかがでしょうか。
- ○METI事務局 その辺りは、私ども実際に審議会の進行についてのいろいろな御注文とか、御 指摘、御批判もいただいております。この場を借りましてもう一度御説明いたしますと、基本的に は第1回、第2回、第3回というのはそれぞれ独立して、それぞれの観点からの問題点について御

議論をいただいております。

第4回につきましては、それらをとりまとめるという、必ずしもそうでもないんですが、やはり 1回目~3回目までで御議論いただいたものを体系的に整理をすると、こういう形になるという一 つの絵姿をお示ししているものでございます。

○吉岡委員 今日は時間があるということで、ゆっくりお話を伺いたいと思っているんですが、そうしますと、資料3-2の方の4ページに掲げておられます図の上の方で、各ワーキングの結論がどこでどのように反映されているのかということをわかりやすくしていただかないと、せっかく話をした議論が、ここでは取り入れられているのか、取り入れられていないのかということが非常にわかりにくいと思うんですけれども、その点はいかがでしょうか。

○METI事務局 少しかみ砕いて御説明を申し上げますと、今、御指摘いただいたスキーム図の中にはでき得る限りの議論の経過のものは取り入れたというふうに御理解をいただけたらと思います。

ただ、特に第3回のハザード評価方法の議論というのは非常にたくさんの論点がございまして、 その中で、特に結論が出たかどうかという今の先生の御指摘から言うと、出しにくい問題がたくさ んあったというのは事実でございます。そういったものにつきましては、今のところ、このスキー ム図の中にまで取り込まれているというものではございません。

もう一度申し上げますと、その中で、比較的議論が整理されたものとして考えられますこととしましては、まず、上市前の審査のところの図としましては、事前審査の段階にリスク評価の概念を入れてあるというのは、おおむね皆様の御理解があったところでございます。

併せまして、上市後の対応というところでございますが、先ほども御説明いたしましたが、リスク評価をしていく対象物質というものすべて対象を広げるという意味で、そこについても御理解といいますか、皆様の御認識は比較的一致したかと理解しております。

そういったものに対しましては、製造輸入数量の届出を求めてはどうかという御指摘もありましたので、それも図の中には一応取り入れてございます。

それを段階的に評価していくという意味で、上の図では一次リスク評価、二次リスク評価、三次リスク評価という段階的な書き分けをしてございまして、それぞれについてどういうハザード情報を求めていくか、あるいは暴露情報を求めていくかということも一応書き分けて記載してございます。

この図の中に書き切れていないものは当然ございますので、それにつきましては、個々にこの場で御質問をいただけますと、それにつきまして補足的にまた御説明をしたいと考えております。 とりあえず、以上でございます。

○吉岡委員 一人ばかりしゃべってもいいんですか。図の中で私がわかりにくかったのは、上市前と上市後ということで新規化学物質と既存というふうに分けております。では新規化学物質のリスク評価を行うのと、一次リスク評価行うこととは一体何が違うのか。もし同じであるのならば、わざわざ分ける必要はなくて、同じにしてしまった方が早いのではないか。図の上ではね。

それから、特に新規化学物質と既存化学物質の違い、あるいは公示後の物質の違いの問題ですけ

れども、例えば、これは私が最初に会議のときに聞いたことで印象に残っているんですが、既存物質の中で全部つくられているわけではない。多くのものはつくられていないんだという話を聞きました。では、つくられていないのならば、それは全部新規にしてしまえばいいじゃないかと単純に思うわけです。今、つくっていないわけですから、それでだれも損をするわけではない。新しいデータはそのときに入ってくるから、別に問題はないような気がします。

もし、REACHという考え方を尊重するのであるならば、既存物質ももはや企業の責任です。もともと化学物質の安全性というものを担保するのは、だれが一番主体になるかというと、それをつくって、それによって利益を受けているものが当然その責任を持つだろうという観点を持ちたいと思っております。これは個人的な意見ですけれども、そういう意味からすると既存というものと新規というものをわざわざ分けて論じる必要が最初からあったのかなという意見を持っているんですが、それが議論をされていないということは、ちょっと不思議だったんです。

○METI事務局 そういう御指摘もございました。今、先生がおっしゃいました、新規と既存のスキームを分ける方がいいのではないかということに関して言いますと、新規の段階のリスク評価というのは、やはり、あくまでも数量でありますとか、用途というものは、当初の供給者の想定をする範囲でしか決まらないものであります。

上市後の状況ということになりますと、実際現に使われている、つくられている数量という形で、 よりリアリティーのある数字になります。

そういう意味では両者が全く同じリスク評価の内容になるかというと、そこまでは多分統一できないだろう。しかしながら、その考え方としましてはハザードと暴露からある程度のリスクの懸念のある、なしを判定するという意味で一次リスク評価的な、図で言いますと、上の右側の上市後の、一次リスク評価的なリスク評価が上市前に行われる。これをやることによって、その結論として入る箱が同じになるということでございます。

ですから、形式的には既存と新規が分かれているんですが、実際、今後、新化審法の中でリスク評価をやっていくものというのは、統合されて判断をされていくということかなと理解しております。

○中杉委員長 私は事務局ではないんで、委員会に出ている1人で、委員会のときに、必ずしもそういう議論をしていないんですが、先ほどの第3回目の議論の中でやった、良分解性物質みたいなものを考えたときに、良分解性物質は最初から新規のところでやるのかという議論もなる。良分解性物質が問題があるというのは、大量に生産消費をしたときに、環境中に出し続けると問題があるという話になるんです。それを最初から新規化学物質の段階でやるかというもう一つの問題があって、そこが場合によっては違うかもしれない。それについては、良分解性物質ですので、新規のところではある程度押さえておいて、製造、使用の状況把握しておいて量が多くなったところで審査をしていくというスキームもあるだろうと思います。

ですから、この辺のところは、必ずしも私の解釈は、1回目、2回目、3回目、4回目もそうですけれども、このワーキングで何か結論を出して親委員会に提示するという話ではないと最後に御説明をいただいて、一応論点を整理して提示しましょうということだったと思います。論点を事務

局の方でまとめていただくと、第4回のこういう案がどうであるかということを提示されたと。これについてまた第4回のワーキングで御意見が出たので、それを踏まえて事務局は、小委員会の方に、これをリバイスした案を提示されるんだろうと私は解釈しております。そういうことでよろしいですね。

- ○METI事務局 今、先生から補足いただいたとおりで結構でございます。
- ○江馬座長 そのほかございますか。どうぞ。
- ○若林委員 ちゃんとまだ検討していませんけれども、全体的には今より整ってきたのではないかという気がいたします。ああいう会議では、総括的な議論と言ったらいいんでしょうか、細かい議論ができないというのは承知をしているんですけれども、ワーキンググループが始まる前の合同会議のときに、要するに、化審法でリスクの高そうなものをなるべく落とさないような審査システムにしなければいけないんではないかということで、生態影響の例を申し上げて、化審法の対象物質というのは、本当に溶解度の低いものばかりで溶けない。

本来リスクは、化審法では慢性影響で見ると言っていながら、急性影響で、溶解度ぎりぎりで影響が出ないので、全部切っていますね。多分、多くの慢性影響のありそうな物質を、私は今は落としていると思っています。

それを拾うというのは、並大抵のことではないんですけれども、今回の体系の中で、それを拾うような、細かい議論はこれからだと思うんですけれども、そのものがこの図の中に入ってくるのかどうなのか。それはまた3年後とか、5年後とかの先送りになるのか。その辺が私は審査に参画していながら、いつも気になるもので、慢性影響を最初から見るなり、底質にいくようなものに対しては、少なくとも、その試験を追加するなり、少しでも拾うことを、できれば私は今回の改正で入れてほしいとずっと思っていたんです。

○MOE事務局 そういう議論は、確かに第1回にも若林先生からいただきましたし、ワーキング グループにおいても出てきております。これまでも、森田室長からも御説明がありましたように、 このイメージというのは、勿論すべてではなくて、今後の体系としてリスクベースで判断していく という流れを絵にすると、こういうふうになるということ。

具体的には、もう少し実務的な論点というのは、これはこれまでも出てきておりますし、それを落としてはいけないと思っておりますけれども、まずは法改正で対応すべき事項を中心に御議論をいただいているということでございまして、御指摘にありました、例えば急性3点だけで慢性がどこまで見られるのか、または底生生物は見なくていいか、これは、必ずしも法律を変えなくても、試験法を工夫することによって、もしかして代用することが可能かもしれないということで、勿論、御議論いただきたい点ではございますし、これをどこまで細かく答申に書くべきかということは、もう少し検討する必要はあろうかと思いますけれども、非常に大事な点であるということは、我々も承知しているところでございます。

- ○江馬座長 どうぞ。
- ○吉岡委員 この図の中で、少しわかりにくい点があるので御説明いただきたいと思うんですが、 上の図で、既存化学物質のところが、下に点線でハザード評価というものがございます。それから、

左側の新規化学物質のところでハザード情報というのが出てまいります。このハザード情報は、S I D S の関係のものではないとするならば、どういう意味のハザード情報であるのかということを教えていただきたいと思います。

○METI事務局 上の新規のところのハザード情報というのは、今、まさに先生方にいつも御審議いただいている上市前のハザードをデータセットに基づく評価と考えております。

それから、上市後の点線のところのハザード評価がございますけれども、これは、先ほど終わりました既存化学物質点検でございます。こういったイメージで、既存のものについても、引き続き国なり公的な立場でハザード評価をやる必要があるだろう。そういう整理でございます。

○吉岡委員 ということは、その後ろにあります優先評価物質のところのハザード情報というのは、 生態影響に関していえば、何に当たるわけですか。

○METI事務局 こちらは、SIDSデータ項目という形で、恐らくは、今、御審議をいただい ている上市前データセットよりは広いものがここに含まれるのではないかと理解しております。

○中杉委員長 具体的な事例を挙げると、先ほど言っていた、ミジンコの急性遊泳阻害試験に繁殖毒性試験のあれが加わるというのが、一つの例ですね。そういう意味でもう少し増えてくるという、ですから、どこまで何を増やしたらいいかという話は、多分この審査小委員会辺りで議論していかなければいけない話ではないかと私は理解しておりますけれども、どこまで入れるのか。その3つだけですね。藻類生長阻害試験、先ほど若林先生が言われたようなものについても、例えば試験をやりなさいというようなのはここら辺で入ってきたりするという。それは最初から藻類を入れてしまえという考えもありますけれども、この辺を少し最初のところでやるのと、それに加えてやるのと、一特なりの判定をするところと、段階的にどういう試験が必要なのかという整理を、これから議論していく必要がある。それをやらなければ、それこそ吉岡先生が言われるように最初と同じでいいんではないかという話になりますし、段階を追うのか、追わないのかというのは、また細かく見ていかなければいけないのかなと私は解釈しているので、必ずしもこのとおりなるかとは、一応概念としてはこういう何段階かを経てやるんだろうなということを提案していただいていると理解をしています。

○北野部会長 私も、合同委員会のメンバーをしているんですが、合同委員会の中で大きな流れと か基本的な考え方を議論していると私は理解しています。

先ほど若林先生がおっしゃったことは、私も前から言っていることで、同意見で、それについては、今後、必要に応じて小委員会みたいなものをつくっていただいて、そこで判断していただく。例えば高分子についての評価についても簡略化できるんではないかという動きがありますが、ではどこまで試験をお願いして、どこを省くか、そこは別途小委員会でやらないと無理だと思うんです。

そういう意味で、それぞれ専門家で個別のテーマを決めてやっていく。ですけれども、この合同 ワーキンググループ、全体会合というのは、ハザード評価からリスク評価へ行くとか、そういう大 きな流れについて議論をしていく場と私は理解しております。

○吉岡委員 済みません、時間を占有してしまいまして、今、中杉委員長の方からおっしゃいました、長期毒性試験のデータは、二次リスク評価以降に入るデータではないんですか。SIDSのデ

ータそのものの中に、長期毒性がもし入っているのならば、この後で、二次リスク評価をやる必要 はないので。

○中杉委員長 例えば、ミジンコの繁殖毒性試験というのは、長期なのかどうかという議論がありますね。ですから、そういう意味では、どれをどこでやるかというところは、これから専門家の中で議論をしていかないといけないだろうと考えていますけれども、1段で済むのか、2段をやらなければいけないのかというのは、もう少し議論をして決めていく話だろう。流れとしては1段で、同じでいくよという形で、今の段階では完全に合意ができていると言えないので、こういうふうに分けていると、私はそのぐらいに解釈しておりますけれども。

○MOE事務局 確かに、この委員会の議論の中ですので、SIDS項目とは何だということは、 一応、資料としては提示をしてございますけれども、正確に言うと、どこまでをどの段階で求める べきなのかという具体的な議論までは行っていないという現状ではないかと思います。

現在のOECDのSIDS項目においては、勿論、急性3点は入っておりますけれども、水生生物に慢性毒性、魚類、ミジンコというものも、条件つきで一応必須項目という形になっておりまして、その構造及び性状から長期影響のおそれがある場合、水生環境の暴露が極めて大きい可能性がある場合には、慢性毒性データもSIDS項目という扱いにはなっております。

更に陸生生物の影響についても、陸生環境への暴露が極めて大きいと考えられる場合には、SIDS項目ということになっておりまして、OECDの高生産量のプログラムを中では個別に判断して、必要な場合にはデータが入ってくるという状況かと考えておりますけれども、どういう場合に、最初のSIDS項目に、こういった慢性毒性データが入ってくるかというのは、もう少ししっかりとした議論、具体的な議論が必要かと思います。

○吉岡委員 私のイメージが、随分違ったんですけれども、例えば既存化学物質なので、あるいは 審査後公示物質で、毎年製造数量が変わりますね。毎年製造数量が変わったものが出てくる。それ を第1次リスク評価というものを行っていく形になります。とても人手ではできないんだろうから、 全部コンピューター処理にならざるを得ないという形になります。

そのときに、ハザードデータが全くなしでこれをするということができないはずですね。今のお話ですとね。今、既存あるいは公示後のもので、データが全部本当にそろっているんですかというのが非常に疑問に思う点なんですが。

○METI事務局 済みません。そこは説明が不十分なんですが、データがないものはリスクの懸念がないとみなさないので、低リスクのものだけを落としていくという、そういうスキームにしています。ですから、最初、数量なり環境中への放出可能性みたいなものを見た上で基礎の信頼性あるハザードデータがあればそこで見ますけれども、そこでないものが多いということであれば、まずはリスクの懸念があるのではないかという形で右へ押し出していく。そういう考え方を取っております。

○吉岡委員 そうしますと、ある程度の数量が出てきて、通常の取り扱いをされている場合に、データのないものは、多く優先評価化学物質になる可能性があるとは思います。そのときに一体だれがそれをするんですか。

○北野部会長 その辺はまだ議論をしていないんですが、一つの考え方としては、ある程度行政指導というか、業者にデータを、私としてはお願いしていくという考え方をしております。データを出していただけない場合には、リスク評価できないのであるから、低リスクとはしないと、そういう担保が必要だと私は思っています。

まだこの辺は、結論が出ているわけではないんですが、委員の1人として、私はそういうふうに 考えております。あくまで事業者にデータを要求していくということと考えています。

○吉岡委員 多分、実際の工業会においては、細かい部分のところは、きっと一番大事だろうと、 関心を持っているんだろうと思います。そういうところを明示しておかなければ、後からいじって ごまかして、つくられたらおかしなものなっているなというイメージを持たれると非常に怖いので、 明確にしながら議論を進めていただきたいと思います。

以上です。

○江馬座長 そのほか、コメントがございましたらお願いいたします。

〇田中(嘉)委員 リスクベースにするということで、要するに、暴露量と毒性値との比率で物を考えるというのは、非常に斬新なというか、今まで化審法ではそこまでやっていなかったので、非常に生産量が多い、ぎりぎり三監にならないようなものも引っかかってくるので、非常に画期的なんではないかと思います。

幾つかコメントというか要望があるんですけれども、リスクベースにすると、何をもってリスクと定義するかという問題が出てきて、それはリスクの使い方とも関係をしてくるんですけれども、リスクという概念はもともと定量的なので、もしも定量的なリスクにすると、それが実際の危険度と比例するような形のリスクの定義の仕方、普通はハザードポーシェントで、単なる比でやったりするんですけれども、しかも、その基準というのも、一次と二次と三次とで、必ずしも同じでない場合がある。高次の場合は、特に生態系の場合は非常に複雑なので、例えば、産総研なんかでやっているようなリスク評価書みたいな、例えば群集レベルもあれば、個体でのレベルもある、場合によっては遺伝毒性も入ってくるかもしれないというようなある程度のフレキシビリティーがあった方がよい。

ただ、最終的に、例えば生態系の場合だったら生態系、人間の健康だったら、人間の健康がだれが見ても定量的にコンパートビリティーがあるようなリスクの定義の仕方をしていくという作業が必要になってくるんではないかと思います。

もう一つは、リスクの使い方なんですけれども、2特とか、1特にするというのは、ある意味不連続に、これ以上は悪いです、これ以上はしませんというふうに、ベンチマーク法と言いますけれども、要するにある線を引くために使うだけなのか、それともリスク論を本来のというか、定量的にどれがどれだけ悪いんだというような使い方に近づけるのか。もしもそういうことをすると、例えば情報開示のレベルをもっと下げて、例えば発がんでやっているような、トリハロメタンはこれだけの発がん率がありますよとか、数値で消費者にも分かれるような形で出すのか、その辺はどういう議論が行われているのか、あるいはこれからどういう議論に発展するのかという気がいたします。

以上です。

○中杉委員長 今の田中先生の後ろの部分で、化審法の世界だけで化学物質のリスク管理をすべて やるわけではないので、多分連続的だという話のレベルのところでは、ほかの環境規制法を使って やる話ではないか。化審法のところでは、ある程度すぱっとどこかで切らざるを得ないだろうと私 は考えていますけれども、それで足りない部分はそういうところで補って、連続的なところはそう いうふうにやって、例えば排出基準でこれ以上いけないとか、そういうことで補っていく方法を取 らざるを得ない。これはあくまでも今やったような化審法の議論なので、そういう意味では、ある 程度割り切りなのかなと私は考えております。

○江馬座長 どうぞ。

○西原委員 この見直しの方のこととも関係するんですけれども、関係しないこともあったんですけれども、一つは、結局見直しをした後、いつごろをめどに、タイムスケジュールというのは、大体大まかでいいんですが、どのように考えておられるのかということと、実は、先ほど既存で一監をつくりました。その場合はその後をどういうふうにやっていく予定なんでしょうかと、二つを聞きたいと思います。

○METI事務局 これも説明が不十分で申しわけなかったんですけれども、今後の化審法で規制 する化学物質の区分としては、2系統はあると我々は整理しております。

一つは、高ハザードのものという見方をしております。わかりにくいという批判は前提で、高ハザードのもの、もう一つのものは、高リスクが懸念されるものという2つで分けたいと思います。 前者の高ハザードというものは、第一種特定化学物質のようなものを想定しております。それに つながるものといたしましては、今日、御審議をいただいたような第一種監視化学物質のようなものが、それにつながっていく。

そういう意味では、高ハザードのものの化審法における管理というものは従来どおり継続すべき ではないか。これは当然化審法が今まで果たしてきた歴史的な役割は当然重要でございますので、 それはちゃんとやっていく。

もう一つ新しく今、2特と呼ばれておりますものが、もう少しリスクベースでいろいろなものカ バーしていくような体系にしていきたいというのが、今回の新しい提案でございます。

それで、西原先生のいつぐらいまでやるんだという話にお答えするとすれば、少なくとも 2020 年までには、こういった体系が回っていて、少なくとも懸念のあるものは全部把握するなり何らか の手当を講じている状態が構築されるべきであるということで、これからスケジュールをもう少し 詳細に切っていきたいと考えております。

○中杉委員長 今の森田室長の御説明で大体いいと思うんですが、もう一つ私が申し上げたのは、 リスクで管理するときに、リスクの大きさ、強さだけではなくて、リスクがコントローラブルかど うかという話が非常に重要なポイントだと申し上げました。

これは実際にリスクを低減しろということ考えたときに、逆にすることは十分できない、例えば 用途とかそういうことを考えるとできないというものについては、例えば化審法の方で制限してい くということが必要であって、そういう見極めをしていくことが、必要なんだろうと思っています。

- ○江馬座長 よろしいでしょうか。まだコメントがございましたら、どうぞ。
- ○吉岡委員 リスク評価において、製造輸入量というようなものをパラメータに入れてまいりますと、製造輸入量の違いによって、あるときは二次へ行って、あるときは三次へ行ってというような変動が非常にたびたび起きてくるとは思うんです。

そういうときの対応の方法というものをどうするか。例えば二次リスクの評価をしなければいけないということになって始めた途端に製造輸入量が落ちて、もう関係ないという、次の年に評価になってきたという場合どうするのかということを、後にお示しいただくとわかりやすいかと思います。

以上です。

○江馬座長 そのほかよろしいでしょうか。まだコメントがございましたら、また後ほどでも事務 局にお伝え願えればと思います。

今日は後も混んでいますので、この議論はこの辺にしたいと思います。

事務局から、そのほか何かございますか。

- ○MHLW事務局 特にございません。
- ○江馬座長 それでは、本日の審議会の第一部は、これで終了します。休憩をとります。45分から 第二部、新規化学物質の審議を開始します。第二部は非公開とさせていただきますので、傍聴者の 方におかれましては、御退室いただきますように、お願いいたします。

どうもありがとうございました。

(休憩)

資料2-1

平成20年10月 既存化学物質点検(分解・蓄積)結果資料 〈第79回審査部会〉

	一		番宜即会〉			ATTE	
K番号	物質名 (CAS No.)[PRTR番号] 官報公示整理番号	分解度(%)	分配係数 (log Pow)	濃縮倍率	判定案 ()内は既判定	後続の試験案 (試験の種類, 試験物質)	頁
	DL - メチオニン (59-51-8)	BOD 72, 79, 92 (81) TOC 78, 81, 86 (82) HPLC 84, 89, 95 (89)			良分解性	なし	1
1824	トリナトリウム= 7 - ヒドロキシ-8 - (4 - スルホナフチルアゾ) -1, 3 - ナフタレンジスルホナート (2611-82-7) 5-1495 NaO ₃ S NaO ₃	BOD 3, 5, -1 (2) TOC 1, 2, 2 (2) HPLC -1, 1, 0 (0)	有機物質の塩 であるため測 定不可 1.63 ^{*1}	1区:0.55倍以下 2区:5.6倍以下 脂質含有率 開始前 3.92% 終了後 4.65%	難分解性 高濃縮性では ない	なし	2
81C	2-tert-ブチルフェノール (88-18-6) 3-0503 OH C(CH ₃) ₃	審議済(難分解性) (平成19年7月27日) BOD: -3, -4, -4 (0)*2 TOC: 35, 40, 25 (33) HPLC: 32, 39, 23 (31) 被験物質の一部が試験液から炭酸 ガス吸収剤に移行した。	3. 74*3 (pH4. 0) 3. 42*1	1区:62倍 2区:78倍 脂質含有率 開始前 4.15% 終了後 3.77%	(難分解性) 高濃縮性では ない	なし	5
663A	ビス (水素化牛脂) ジメチルアンモニウム=クロリド (61789-80-8) [1-251] 2-0184	審議済(難分解性) (平成14年7月23日) BOD: -3, -3, -2 (0)*2 HPLC: 17, 17, 17 (17)	有機物質の塩であるため測定 不可 8.44(n=13)*1 12.37(n=17)*1	1区: ピーク1 130倍 ピーク2 85倍 ピーク3 45倍 2区: ピーク1 280倍 ピーク2 190倍 ピーク3 110倍 脂質含有率 開始前 3.04% 終了後 3.38%	(難分解性) 高濃縮性では ない	なし	8
1638	ドデシルジフェニルオキシドジスルホン酸ナトリウム (28519-02-0) 3-1968 C ₁₂ H ₂₅ O O O O O O O O O O O O O O O O O O O	審議済(難分解性) (平成16年5月28日) BOD: 2, 2, 3 (2) HPLC: 5, 5, 4 (5)	有機物質の塩 であるため測定 不可 3.31*1	1区: 2.3~3.3倍 2区: 14倍以下 脂質含有率 開始前 4.32% 終了後 4.23%	(難分解性) 高濃縮性では ない	なし	11
1762	3',6'-ビス(ジエチルアミノ)-スピロ[イソベンゾフラン-1(3 <i>H</i>),9'-[9 <i>H</i>] キサンテン]-3-オン (509-34-2) 5-3090	審議済(難分解性) (平成18年7月21日) BOD: -3, -2, -2 (0)*2 TOC: 2, 0, 3 (1) HPLC: 1, 1, 1 (1)	6.63*1	1区:0.91倍以下 2区:9.1倍以下 脂質含有率 開始前 2.87% 終了後 1.94%	(難分解性) 高濃縮性では ない	なし	14

*1 Kowwin v1.67 SRC-LOGKOW for Microsoft Windowsによる計算値。 *2 分解度の平均値が負の値に算出されたため、0と表記した。 *3 フラスコ振とう法による予備値。

$(2-1\ 2\ 5\ 4)$	分解度試験	分解度試験	分解度試験
	事業対象年度 平成19年度	契約 年月日	契約 年月日
	試験期間 19.10.23~20.3.6	試験期間 ~	試験期間
	試験装置・標・揮	試験装置標・揮	試験装置標・揮
戊	試 験 濃 度	試験 濃度	試験濃度
NH ₂	被験物質 100 mg/L	被験物質 mg/L	被験物質 mg/L
	汚 泥 30 mg/L	汚 泥 mg/L	 汚泥 mg/L
	本試験期間 4 週間	本試験期間 週間	本試験期間 週間
	間 BOD 72, 79, 92 (81) %	間	間
分子量 149.21	試 接	tix	接接
外 観 白色粉末	験 x± TOC 78, 81, 86 (82) %	験	験
溶解度(対水、その他)	果 HPLC 84 89 95 (89) %	果	結 直
対水 30.8g/L(20℃)		接	接
対アセトニトリル 1g/L 以下	<u> </u>	審査部会 第 同	
1ーオクタノール/水分配係数	20年10月24日開催	年 月 日開催	年月日開催
非解離状態にすることは 困難であるため、測定不可	判定	判 定	判 定
加水分解性	備考		備考
pH4,7,9 加水分解性なし	1. 回収率* (水 +被驗物質)系 100%	・TOD の算出はアンモニア態窒素	
解離定数	(汚泥+被験物質)系 100%		
pKai - 測定不可 pKa2 - 9.42 (滴定法)	※試験液を直接分析機器に導入。	被験物質)系の BOD 曲線は緩や	
	2. 実施機関 ・財団法人 化学物質評価研究機構	・(汚泥+被験物質) 系の HPLC クロ	
	•	マトグラム上に変化物ピークは 検出されなかった。	
·	・(汚泥+被験物質)系において	1	
年 月 日	アンモニア態窒素の生成を確認した。		
	大	事業対象年度 平成19年度 試験期間 19.10.23~20.3.6 試験装置 標	事業対象年度 平成19年度 契約 年月 日日 日日 日日 日日 日日 日日 日日

^{‡1} 東京化成工業添付資料による。

整理番号 K-1824	(5-1495)	分解度試験	分解度試験	分解度試験
トリナトリウム=7-ヒドロキシ-8-(レンジスルホナート 【別名 アシッ (2611-82-7)	4-スルホナフチルアゾ) -1, 3-ナフタ ド レッド-18]	事業対象年度 平成 1 9 年度 試験期間 19.11.15~20.2.29	契約 年月日 試験期間 ~	契約 年 月 日 試験期間 ~
構造式(示性式)・物理化学的性料	t co Na	試験装置(標)・揮		
	SO ₃ Na			試験装置標・揮
N S	TaO ₃ S—	試 験 濃 度 被験物質 100 mg/L	試 験 濃 度 被験物質 mg/L	試験濃度 被験物質 ng/L
NaO ₃ S—	$N=N-\langle \rangle$	汚 泥 30 mg/L	汚 泥 mg/L	汚 泥 mg/L
	>	本試験期間 4 週間	本試験期間週間	本試験期間 週間
	HÓ	間 BOD 3, 5, -1 (2)%	間	間
分子式 C ₂₀ H ₁₁ N ₂ Na ₃ O ₁₀ S	83 分子量 604.47	試 接		試接
純 度*1 94.7%	外 観 赤色粉末	験 括 TOC 1, 2, 2 (2)%	験 結	験
不純物*1 (物質名, 含有率) 水分 4.2%	溶解度(対水、その他)	果 ^但 HPLC -1. 1. 0 (0) %	果	果児
不明有機成分 5成分合計 1.1% (各成分 1%未満)	対水 300g/L 以上(20℃) 対メタノール 10g/L 以上	接	接—————————————————————————————————————	接
		審査部会 第79回	審査部会 第 回	審査部会 第 回
融 点 測定不可(200℃付近から 変色し黒色に変化する)	1ーオクタノール/水分配係数	20年10月24日開催	年 月 日開催	年 月 日開催
沸 点 測定不可(200℃付近から 変色し黒色に変化する)	測定不可(本物質は非解離状態で 分配係数を測定できない)	判定	判定	判定
蒸気圧 2.14×10 ⁻⁵ Pa 以下 (気体流動法,80℃)	加水分解性 pH4,7,9 加水分解性なし	備考	備考	備考
密度	が カルハカガ (1、1・10・10・10・10・10・10・10・10・10・10・10・10・10	1. 回収率* (水 +被験物質)系 100%		
LD50	解離定数	(汚泥+被験物質)系 100%		
IRチャートの有無 有・無		※試験液を直接分析機器に導入。		
用 途		2.実施機関 ・財団法人 化学物質評価研究機構		
生産量				
試 料 購入先 東京化成工業	TCI-FC			
経済産業公報発表年月日	年 月 日			
+1 HDIC 17 + 3		<u> </u>		<u> </u>

^{*1} HPLCによる。

濃	縮度試験		事業	対象年度	平成	19年	雙	濃	縮度試験									1	备性	: 2	、験
試	験期間		1 9	. 11. 1	9 ~	20.	2. 6	鵨	験期間				~						年	月	日
鴙	験装置	標	· 揮 LC50	値 >200 m	g/L (96h	ır)魚種	(ヒメダカ)	討	験装置 榜	Į.	揮 LC50 1	ii n	g/L(hr)	魚種(依			
水	槽設定濃	慶度	(µg/L)					水	槽設定濃度	—— [()						·	頼			
		Т			 分	· · · · · · · · · · · · · · · · · · ·		1		Т		· · · · · · · · · · · · · · · · · · ·	 分	₩	太 川			<u> </u>			
			被験物質		Ţ <u>.</u>	7,77		1		1	波験物質			- NA	Au .			経	過		
	. Mile selection	_						_		+											
	1 濃度区		474		 			月	91 濃度区 												
第	2 濃度区	ζ.	47. 4		1			舅	52濃度区												
第	3 濃度区	Σ						角	3 濃度区												
是 ;	縮倍率	3	脂質含	有率 開始前	前 3.92 备 4 65	% 魚和	重(コイ)	濃	縮倍率	•	脂質含	有率 開始		%	魚種	()					
=				16日後				-		_	日後	小三.1			日後						
T	水槽濃度(μg/l		470	458	470	467	T	水槽濃度()											
3 -	倍	靐			≦ 0.55			第	倍	率											
4			≦0.55	- -	≦ 0. 55	 	5 ≦0.55	L	114					\perp							
ş -	水槽濃度(μg/I		46.6	46. 3	46. 4	46. 2	第	水槽濃度())	ļ		_		<u> </u>					
2	倍	率	≤5.6 ≤5.6		≦ 5. 6 ≤ 5. 6	≦5. 6 ≤5. 6		2	倍	率				+			·				
+	水槽濃度(, :) ≥ 5. 6	≥ 5. 0	≥0.0	≥ 0. €	≦5.6	├	水槽濃度(,	 		+	· · · · · · · · · · · · · · · · · · ·						
戶			' .	1		 	+	第			'			+		-					
3	倍	率		1		1		3	倍	率				\dagger							
審:	查部会	第	79回	20年 1	0月	24日	開催	審	査部会 2	第	日	年	月		日	 開催					
判)	———— 定結果							判	定結果												
備	考						-	借	考								·	1			
•		ابر بادر ا د	フ油をか出して	数 1 3 mm mm m m	o eratr	·1] VAS	77								• •				,
Į į		CBIT ,		第1濃度区 第2濃度区																	
[[回 収 率]]	•	[定量下]		•											. *				
	試験水※		%		第1濃度																
	######################################	00 4	10/	供試魚		区 2.												1	•		
	供試魚 (ほ			供訊用 学物質評価の			Ong/g														
			经分析機器		VI JUINCIF	-		ــــــ								,	<u> </u>			.	

[※]試験液を直接分析機器に導入。

K-1824の類似物質表

化 合 物 名 (CAS 番号)	構造式	官報公示 整理番号 (K-番号)	分 解 度 (%)	分解 判定 (年)	分配係数 (log Pow)	LC50 mg/L (ヒメダカ)	濃 縮 倍 率	濃縮 判定 (年)
トリナトリウム=7-ヒドロキシ-8-(4-スルホナフチルアゾ)-1,3-ナフタレンジスルホナート(2611-82-7)	NaO ₃ S-NaO ₃ Na NaO ₃ S-NaO ₃ Na	5-1495 (K-1824)	標準(4W)2008年実施 BOD 3, 5, -1 (2) TOC 1, 2, 2 (2) HPLC -1, 1, 0 (0)		測定不可	>200	2008 年実施 ばく露期間における濃縮倍率 1 区 (474 μg/L): ≦0.55 2 区 (47.4μg/L): ≦5.6 脂質含有率 開始前 3.92% 終了後 4.65%	
リアクティブ ブラック -5 (17095-24-8)	NaO ₃ S N=N-SO ₂ CH ₂ CH ₂ OSO ₃ Na NH ₂ OH NaO ₃ S N=N-SO ₂ CH ₂ CH ₂ OSO ₃ Na	5-3012 (K-418)	標準(4W) 1998年実施 BOD 2, 3, 8 (4) TOC 12, 8, 8 (9) HPLC 97, 96, 95 (96) (一部変化し、4-アミノ-5-ヒドロキシ) -3,6-ビス[4-(ビニルスルホニル)フ ェニルアゾ]-2,7-ナフタレンジスル ホン酸を生成した。	難分解性 (1998)	1983 年実施 -4 以下 (フラスコ振とう法)	>1000 (48hr)	1983 年実施 1 区(2 mg/L): <1.1 2 区(0.2mg/L): <11 脂質含有率 4.7%	高濃縮性 ではない (1983)
ダイレクトプラック-154 (37372-50-2)	(A) H ₂ N — N=N — N=N — NH ₂ OH NH ₂ OH N=N — NH	5-1391 (K-404)			測定不可	135 (48hr)	1981 年実施 1 区(1 mg/L): 8.1~22 2 区(0.1mg/L): 49 ~66 脂質含有率 5.4%	高濃縮性 ではない (1981)
ダイレクトブル―-15 (2429-74-5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5-1286 (K-1569)	標準(4W)2002年実施 BOD 0, 3, 9 (4) TOC 3, 0, 1 (1) HPLC 2, 1, 2 (2)	難分解性 (2002)	0.71*		類似物質から類推	高濃縮性 ではない (2002)
ダイレクトブラック-38 (1937-37-7)	NaO ₃ S NH ₂	5-1370 (K-1570)	標準(4W)2002年実施 BOD 0, 0, 0 (0) TOC 0, 0, 0 (0) HPLC 0, 0, 0 (0)	難分解性 (2002)	4. 90*		類似物質から類推	高濃縮性 ではない (2002)

^{*} Kowwin v 1.67による計算値。

整理番号 K-81C	(NEDO 348, 3-0503)	分解度試験 分解度試験 分解度試験	 後
2-tert-ブチルフェノール	(88-18-6)	事業対象年度 平成18年度 契約 年 月 日 契約 年 月	日
		試験期間 18. 5. 23~18. 8. 3 試験期間 ~	
		試験装置 標 · 揮 試験装置 標 · 揮 試験装置 標 ·	揮
構造式(示性式)・物理化学的性	状	試験 灋 度 試験 濃 度 試験 濃	度
OII		被験物質 100 mg/L 被験物質 mg/L 被験物質 mg	s/L
ОН	C(CII)	汚 泥 30 mg/L 汚 泥 mg/L 汚 泥 mg	s/L
	$C(CH_3)_3$	本試験期間 4 週間 本試験期間 週間 本試験期間	週間
		間 BOD -3, -4, -4 (0)% 間 間	*****
		試 接 試 接	
		験	-
分子式 C ₁₀ H ₁₄ O	分子量 150.22	果 HPLC 32, 39, 23 (31) % 果	
純 度*1 99.9% (毛管カラム GC)	外 観 黄色澄明の液体		
不純物*1 (物質名, 含有率)	溶解度(対水、その他)	審査部会 第 6 6 回 審査部会 第 回 審査部会 第	 g
水分 0.01% 残り 0.09%は不明	対水*2 700 mg/L (25℃) 対メタノール 10 g/L 以上	19年7月27日開催 年月日開催 年月日	開催
融 点*3 -7℃		判 定 難分解性 判 定 判 定	
沸 点*3 224℃	1-オクタノール/水分配係数	備考	
密 度*¹ 0.984g/cm³ (20℃)	log Pow = 3.74(pH4.0) (フラスコ振とう法による予備値)	1. 回収率* 3. 特記事項	
LD50*4 440 mg/kg (oral, rat)	安定性*4 光により変質する。	(水 +被験物質)系 100% ・分解度の平均値が負の値に算出 (汚泥+被験物質)系 100% されたため、0 と表記した。	
IRチャートの有無 有・無	解離定数* ² pKa = 10.28	・被験物質の一部が試験液から炭 ※試験液を直接分析機器に導入。 ・ 教がおかりはなれない。	
用 途*5 中間物、洗剤等		※試駅校を直接分列機器に導入。 酸ガス吸収剤に移行した。	
生産量*5 (16年) 製造及び輸入:3	-503 として 10,000~100,000 t 未満	2. 実施機関 ・(水+被験物質)系及び(汚泥+ ・財団法人 化学物質評価研究機構 被験物質)系の試験液・炭酸ガス	
試 料 購入先 和光純薬工業	和光一級	吸収剤のGC分析において、クロマトグラム上に変化物ピークは	
経済産業公報発表年月日	年 月 日	認められなかった。	

^{*1} 和光純薬工業添付資料による。 *2 The Physical Properties Database (Jan. 2000) (Syracuse Research Corporation)による。
*3 The Sigma-Aldrich Library of Regulatory and Safety Dataによる。 *4 和光純薬工業 製品安全データシート (2006/4) による。
*5 化学物質の製造・輸入量に関する実態調査による。

濃	縮度調	試験		事業		平成	19年月	¥		縮度試験										7				
話	験期	———— 帽			. 1. 2				1	験期間										-	<i>薄</i> —	性		- 験 日
			剽・揮						—		<u> </u>				~				-	依	:	4	Н	Ħ
					值 3.54 m		I) 思種 ((ヒメタカ)	 -	、験装置 標 		揮 LC50 (<u> </u>	mg/	L (h	r) 魚	種(<u>) </u>	+00	_			
· 水 ——	槽設定	定濃度	€ (µ	ıg/L)					水	. 槽設定濃度	£	()								頼	•			
			紅毛	食物質		分散	数 剤 					Total BEA HEAD FOR			分 散	有	· ·	-						
			1/2 40		ジメチルス ルホキシド							被験物質								棉	経過	t		
第	1 濃月	变区:	2	20	50000				筹	51 濃度区														
第	2 濃月	宴区		2	50000				第	52 濃度区							_							
第	3 濃度	隻区							第	 53 濃度区							1							
	縮倍	 -		脂質含	有率 開始前	f 4. 15	% % & 魚種	(コイ)	濃	縮倍率		上 脂質含4	国 開	始前 了後		% 1	 (種 (1	_			-		
-					10 日後				l			日後			日後		日後		<u>k</u>	}				
	水槽濃	度 (μg	(/L)	20. 3	20. 7	20. 3	20. 5	20. 8		水槽濃度()		7	口改		U 10	LJ 1:	×					e
第十	倍	5	壑	85	40	48	73	74	第	倍至	率			\top										
	- 10		-	73	53	59	56	61		1音 4	4								7					
第一	水槽濃	度 (μg	s/L)	2. 05	2. 07	2. 10	2.06	2. 05	笠	水槽濃度())												
2	倍	Σ	軽	78	80	75	63	79	第 2	倍 至	率		ļi.	_										
-	水槽濃	连 (1	79	78	88	74	89		水槽濃度(, 		+										
第一							ļ	1	第			<u>'- </u>		+-					_				-	
3	倍	<u> 2</u>						_	3	倍	率 													
審	查部会	à 9	第 7	9 回	20年 1	0月	24日	開催	審	査部会 第	第	回	年		月	1	3	見催						
判	定結界	—— 長						J	判	 定結果					·									
備				 					備	考		 					-		-					
[定常状態	核におけ	る濃縮		51濃度区 52濃度区					Ĭ										!				
	回 収 試験水			96. 09	「定量下降 を 試験水	退濃度]	区 0.2	0μg/L																
	供試魚 実施機		才団法		% 供試魚 :物質評価	开究機構		g/g																

K-81Cの類似物質表

化合物名 (CAS番号)	構造式	官報公示 整理番号 (K-番号)	分 解 度 (%)	分解 判定 (年)	分配係数 (log Pow)	LC50 mg/L (ヒメダカ)	濃 縮 倍 率	濃縮 判定 (年)
pー tertーブチル フェノール (98-54-4)	OH C(CH ₃) ₃	3-0503 (K-81)	標準(2W) 1975年実施 BOD 0, 0 (0) TOC 5, 3 (4) G C 4, 1 (3) U V(273nm) 4, 4 (4) 逆転(2W) 1975年実施 BOD 0, 0 (0) TOC 2, 0 (1) G C 0, 0 (0) U V(274nm) 0, 0 (0)	難分解性 (1975)	1996 年実施 3. 29 (フラスコ振とう法)	4. 0 (48hr)	1976 年実施 1 区(40μg/L): 20~43 2 区(4μg/L): <48~88 脂質含有率 —	高濃縮性 ではない (1976)
oー tertーブチル フェノール (88-18-6)	OH C(CH ₃) ₃	3-0503 (K-81C)	標準(4W) 2005年実施 BOD -3, -4, -4 (0)* TOC 35, 40, 25 (33) HPLC 32, 39, 23 (31)	難分解性(2007)	2007 年実施 3.74 (フラスコ振とう法 による 予 備値)	3. 54 (96hr)	2008 年実施 定常状態における濃縮倍率 1 区 (20µg/L): 62 2 区 (2µg/L): 78 脂質含有率 開始前 4.15% 終了後 3.77%	

^{*} 分解度の平均値が負の値に算出されたため、0と表記した。

整理番号 K-663A	(NEDO 10, 2-0184)			分	解月	变 :	試	È			分	解	度	試り			2	分纟	解 度	E 試	験
ビス(水素化牛脂)ジメチルアンモ	Eニウム=クロリド (61789-80-8)	契	約	J	13 €	F	3月	28 日	契	! 糸]	:	年	月	日	契	約		年		月 日
		試態	剣期間	1	14.	2.	4~14	. 4. 4	試	験期間	引			~		試	儉期間				~
		試影	食装置	Ĭ		標	•	揮	試	験装置	1		標	•	揮	試験	検装置			標	· 揮
構造式(示性式)・物理化学的性制	X		į.	试	験	濃	ŧ	度		į	试	験	渡	基	度	-	試	<u> </u>	験	濃	
ÇH ₃			ŧ	皮験物	勿質	10	00 mg	/L		1	披験华	勿質		mg	;/L		被	験物	質		mg/l,
I	—СH ₃ Сl ⁻		ř	写	泥	3	30 mg	/L		Ŷ	汚	泥		mg	:/L		汚	;	泥		mg/L
H_3C - N^+ - $(CH_2)_n$ $(CH_2)_n$ - CH_2	H_3 n=13~17	本語	試験	期間			4	週間	本	試験	期間				週間	本	試験其	期間		•	週間
			間	BOI) -	3, –	-3, -2	(0) %		間	- · · · ·						間				
組成式 C _{39.53} H _{87.93} Cl _{1.00} N ₁	_{. 08} 〇 _{1. 19} (元素分析による)	試	接						試	接						試	接				
屯 度*1 主成分 91.4%	外 観* ² 白色フレーク状固体	験結		HPL	.C 1	7, 1	7, 17	(17) %	験結		•					験結					
「純物*1 (物質名, 含有率) モノ(水素化牛脂)トリメチルアンモニウム=クロリド 2.1%	溶解度(対水, その他) 対水* ³	果	直接						果							果	直接				
イソプロビルアルコール 2.7% 水分 1.9% 遊離アミン 1.7%	ピーク1 7.00μg/L (25℃) ピーク2 7.59μg/L (25℃) ピーク3 6.91μg/L (25℃)	審3	 査部	会		第 1	3 🗈		審	査部	 公会		第		<u> </u>	窯	査部名	 ≙	·	<u></u>	<u> </u>
アミン塩酸塩 0.2% 灰分(食塩分) 0.01%	含有率が不明なため補正なしの値				F 4							F	月		開催		T 147	年	,	月	日開催
独 点* ² 110.0℃	対クロロホルム*2 10 g/L 以上	判	定		難分	分解	性		判	定						判	定				
^{弗 点*2} 測定不可(191℃で黄褐 色に変化)	1-オクタノール/水分配係数 対象外	1	考													備	考				
密度*2 0.964g/cm³(25℃)	XI ax 2 h	1 .	回収 水		験物質	重) 矛	系	97. 2%			事項 試料		験物質	質の約	屯度が低						
D50 * 3 >2,000 mg/kg (oral, rat)	安定性	(?	汚泥	十被	験物質	重) 茅	系	95.0%							として						
「Rチャートの有無 有 ・ 無	•	2. 3	実施	機関	<u> ۱۱</u> م	Ilden Frifr	: 3	Tr 2/a k/k k		(有t	幾物質	含	計 100	0%)。							
月 途*4 石鹸、洗剤、殺虫剤、殺菌剤、防虫剤、防腐剤、防臭剤、 防かび剤、触媒、その他				伍八	16 .7	彻貝	(677)四1	竔究機構							た。 値に算出						
上産量*4 (16年) 製造及び輸入:1,										され	たた	め、	0 とā	表記し	た。						
式 料 提供試料											物質認し		泥に!	吸着的	けること						
	年 月 日																				

^{*1} 提供添付資料による。 *2 提供試料として。 *3 International Uniform Chemical Information Database(European Chemicals Bureau Existing Chemicals)(Edition 2-2000)による。 *4 化学物質の製造・輸入量に関する実態調査による。

濃	縮度試験	:		-		-							事業	対象年	度 平成	19年				· · · · · · · · · · · · · · · · · · ·				 -		
討												1 9	. 2	: 4	~ 20	. 3	. 31				·-·					
話	(験装置 (標・揖	1									LC50)値 >1	. 00mg/L	(96hr) f	4種(ヒ	 メダカ)		 :		<u></u>		-			
	槽設定濃												· · · · · · · · · · · · · · · · · · ·													
										·				 分	散 ;	 剤					•					
		被馴	検物質			テト	ラヒド	ロフラン	,					7	HCO-40						N. N [.]	 -ジメチ	ルホル	ムアミト		
第		0.	457				100					<u></u> ,	,		25								0000		1	
第	2 濃度区	0.	0457				10								2. 5			· -					0000			
第	3 濃度区																	-								
濃	縮倍率	<u></u>		脂質	含有率		台前 3. 了後 3.	04%	-		<u></u> .l	魚種 (コ	1)								 - · · · -			 		
ピ	ーク 1		8日後	13日後	18日後				<u>ا</u> ا	ニーク2				18日後	26 日後	28日後	32 日後	ا ك	- ク 3		8日後	13日後	18日後	26日後	28 日後	32日後
	水槽濃度(μ	ıg/L)	0. 403			0. 420	 			水槽濃度	(μg/L)	0. 433				0. 486				(μg/L)	0. 431		0. 427	0. 459	0. 460	102 11 18
弗 1	 倍	率	97	180	210	120	150	120	第	倍	率	84	150	120	79	94		第			51	71	51	45	47	1
			87	170	150	100	130	120	Ľ			65	120	82	67	82		ı	倍	率	36	60	40	36	53	1
楽	水槽濃度(μ	ig/L)	0. 0422	0. 0411	0. 0424		 	0. 0405	第			0. 0449	0. 0432	0. 0438	0. 0433	0. 0473	0. 0474	第	水槽濃度	(μg/L)	0. 0441	0. 0449	0. 0427	0. 0460	0. 0464	0. 0464
2	倍	率	230	610	470	290	210	260	2	倍	率	140	430	440	200	160	190	2	倍	率	84	210	310	120	88	110
	水槽濃度(100	200	500	390	240	310	<u> </u>	水槽濃度	: / \	48	240	410	250	150	210				60	470	410	150	110	110
第									第			 						第	水槽濃度	()	<u> </u>					
3	倍	率							3	倍	率					•		3	倍	率						
審	査部会										第	79	20	年 1	0月 2	4日	開催			·		•		•		
判	定結果			<u>·</u>				+																······································		<u>· </u>
備	声 考					·			佰	声考								備	 考	-						
[定常状態にお	ける濃縮			区 130 区 280					[定常状態]	こおける濃	名倍率]		X 85 € X 190 €				[5	定常状態に	おける濃縮		第1濃度図 第2濃度図				٠
	回収率] 試験水		90. 0		量下限濃/					[回 収 ፭ 試験水		86. 9							可収率 式験水]	89. 7	[定量	k下限濃度	E] . 濃度区	0. 025 0. 0029	μg/L 5μg/L
	供試魚			% 供			1. 4ng	/g		供試魚		79. 3	% 供	試魚		1. 4ng/	/g	1	共試魚		97. 2	% 供訪	(魚		1. 2ng/	/g
第	立別試験 1 濃度区 ピーク1	外皮		250 t	i> ピーク2		340, 37,		<u>-</u> -	-ク3 外	皮 35 の他 2		第	§ 2 濃度 ピーク	外皮	1000 也 170	, 1100	۳.	ーク2	外皮	2000, 2 110,		ピ ーク3		3600, 他 170,	

[実施機関] 財団法人 化学物質評価研究機構

K-663Aの類似物質表

化合物名 (CAS番号)	構造式	官報公示 整理番号 (K-番号)	分 解 度 (%)	分解 判定 (年)	分配係数 (log Pow)	LC50 mg/L (ヒメダカ)	- 濃 縮 倍 率	濃縮 判定 (年)
ジデシルジメチルア ンモニウムクロリド (7173-51-5)	CH_3 $H_3C-N^+-(CH_2)_9-CH_3$ $CI^ (CH_2)_9-CH_3$	2-0184 (K-663B)	標準(4W) 2007年実施 BOD -3, -2, -2 (0)* LC-MS 0, -1, -1 (0)*	難分解性 (2007)		0.70 7 (96hr)	2007 年実施 1 区(5 μg/L): 54~180 2 区(0.5μg/L): 47~ 95 脂質含有率 開始前 3.75% 終了後 5.79%	高濃縮性 ではない (2007)
セチルトリメチルアン モニウム=ブロミド (57-09-0)	CH ₃ C ₁₆ H ₃₃ —N ⁺ -CH ₃ Br ⁻ CH ₃	2-0184 (K-663)	標準(4W) 1984年実施 BOD 0, 0, 0 (0) TOC 21, 16, 14 (17) HPLC 19, 19, 19 (19) VIS(607nm) 0, 0, 0 (0)	難分解性 (1984)	測定不可	0. 320 (48hr)	1993 年実施 1 区(0.05mg/L): 407~741 2 区(0.005mg/L): 444~677 脂質含有率 3.9%	高濃縮性 ではない (1993)
ビス (水素化牛脂) ジメ チルアンモニウム=ク ロリド (61789~80~8)	CH_3 $H_3C = N^+ - (CH_2)_n - CH_3 CI^ (CH_2)_n - CH_3$ $n=13 \sim 17$	2-0184 (K-663A)	標準(4W) 2002年実施 BOD -3, -3, -2 (0)* HPLC 17, 17, 17 (17)	難分解性(2002)	対象外	>1.00 (96hr)	2008 年実施 定常状態における濃縮倍率 ピーク 1 1 区 (0.457 μg/L) ; 130 2 区 (0.0457μg/L) : 280 ピーク 2 1 区 (0.457 μg/L) : 85 2 区 (0.0457μg/L) : 190 ピーク 3 1 区 (0.457 μg/L) : 45 2 区 (0.0457μg/L) : 110 脂質含有率 開始前 3.04% 終了後 3.38%	

^{*} 分解度の平均値が負の値に算出されたため、0と表記した。

整理番号 K-1638 (NEDO 205, 3-1968)	分解度試験	分解度試験	分解度試験
ドデシルジフェニルオキシドジスルホン酸ナトリウム (28519-02-0)	事業対象年度 平成15年度	契約 年月日	契約 年 月 日
	試験期間 1.6. 2. 3~16. 5.13	試験期間 ~	試験期間 ~
	試験装置(標)・揮	試験装置標・揮	試験装置標・揮
構造式(示性式)・物理化学的性状	試 験 濃 度	試験	試験濃度
$C_{12}H_{25}$	有機物質 100 mg/L	被験物質 mg/L	被験物質 mg/L
	汚 泥 30 mg/L	汚 泥 mg/L ·	汚泥 mg/L
	本試験期間 4 週間	本試験期間 週間	本試験期間 週間
SO ₃ Na SO ₃ Na	間 BOD 2, 2, 3 (2)%	間	間
分子式 C ₂₄ H ₃₂ Na ₂ O ₇ S ₂ 分子量 542.62	試接	接	接
純 度* ¹ ①34.9% ②34.3% 外 観* ³ 黄褐色液体	験 結 + HPLC 5, 5, 4 (5)%	験 結 🖈	験 結 4
不純物(物質名, 含有率) 溶解度(対水, その他) メタノール* ¹ ①1.2% 対 _材	接	果接	果児
その他の有機成分*1 ①12.2% ②12.8% 100g/L以上(25℃)	14	(英)	接 , , , , , , , , , , , , , , , , , ,
(モノスルホン酸体及びジドテシル体と推定される) 対メタノール 水*2 ①48.9% ②50.1% (1%未満のメタ 2000 mg/L 以上*3	審査部会 第 3 4 回	審査部会 第 回	審査部会 第 回
リールを含む 塩化ナトリウム* ² ①2.0% ②2.1%	16年 5月28日開催	年 月 日開催	年 月 日開催
硫酸ナトリウム*2 ①0.8% ②0.7%	判 定 難分解性	判定	判定
融 点*2 -5℃以下 1 - オクタノール/水分配係数 対象外	備考	備考	備考
比 重*2 d ²⁰ 約1.16	1. 回収率* (水 +被験物質)系 100%		
LD50 * ² 710 mg/kg (経口、ラット) 安定性	(汚泥+被験物質)系 100%	•	
IRチャートの有無 街・無	※試験液を直接分析機器に導入。		
用 途] 2. 実施機関 ・財団法人 化学物質評価研究機構		
生産量*4 (16 年) 製造及び輸入:3-1968 として 100~1,000 t 未満]] 3. 特記事項		·
試料 提供試料	・提供試料中の不純物が基礎培養液 中で一部不溶化したため、TOC に		
経済産業公報発表年月日 年 月 日	よる分解度は算出しなかった。		

濃縮度試験 事業対象年度 平成19年度	濃縮度試験 年 月 日	毒 性 試 験
試験期間 20.2.8~20.3.27	試験期間~~	年月日
試験装置 標・揮 LC50値 1.77mg/L(96hr)魚種(ヒメダカ)	試験装置 標·揮 LC50値 mg/L(hr)魚種()	依
水槽設定濃度 (µg/L)	水槽設定濃度 ()	賴
分散剤		
被験物質	分 散 剤 被験物質	経過
第1濃度区 13.7	第1濃度区	
第 2 濃度区 1.37	第 2 濃度区	
第3濃度区	第 3 濃度区	
濃縮倍率 脂質含有率 解始前 4.32% 魚種(コイ)	濃縮倍率 脂質含有率 解始前 % 魚種()	
12 日後 15 日後 20 日後 23 日後 28 日後	日後日後日後日後日後	
新 水植濃度 (μg/L) 13.3 13.1 12.7 13.1 13.4	水情濃度 ()	
1 倍 密 3.3 4.0 4.9 4.3 4.1	7	
2. 5 2. 3 2. 9 2. 5 2. 6		
第 水植濃度(μg/L) 1.29 1.36 1.34 1.35 1.33	新 水槽濃度()	
2 佐 本 = 14 = 14 = 14 = 14	2 倍率	
	水槽濃度())	
第	第	
3 倍 率	3 倍 率	
審査部会 第 7 9 回 20年 10月 24日 開催	審査部会 第 回 年 月 日開催	
判定結果	判定結果	
備考	備 考	
・・・・ 「定常状態における濃縮倍率」 第1濃度区 2.7倍		
[ばく露期間における濃縮倍率] 第2濃度区 14倍以下		
[回 収 率] [定量下限濃度]		
試験水 97.7% 試験水 第1濃度区 0.61 μg/L		·
第2濃度区 0.061µg/L		
供試魚 90.7% 供試魚 19ng/g		
[実施機関] 財団法人 化学物質評価研究機構		

[※]試験水を希釈して分析機器へ導入。

K−1638の類似物質表

化 合 物 名 (CAS 番号)	構 造 式	官報公示整理番号 (K-番号)	分解度(%)	分解 判定 (年)	分配係数 (log Pow)	LC50 mg/L (ヒメダカ)	濃 縮 倍 率	濃縮 判定 (年)
アルキルジフェニル エーテルスルホン酸 塩 (-)	アルキル基部分の 炭素数分布 C ₁₀ 1%以下 C ₁₁ 13~19% C ₁₂ 67~73% C ₁₄ 1%以下 C ₁₄ 1%以下 n=0~1 m=0~1	9-1958 (K-396)	標準(2W) 1980年実施 BOD 2, 2, 3 (2) TOC 19, 22, 18 (20) U V(238nm) 17, 19, 17 (18)	難分解性 (1980)	測定不可	3. 11 (48hr)	1985 年実施 1 区(250μg/L): <0.6~4.9 2 区(25μg/L): <6.3~40 脂質含有率 4.0%	
ドデシルジフェニル オキシドジスルホン 酸ナトリウム (28519-02-0)	C ₁₂ H ₂₅ SO ₃ Na SO ₃ Na	3-1968 (K-1638)	標準(4W) 2004年実施 BOD 2, 2, 3 (2) HPLC 5, 5, 4 (5)	難分解性 (2004)	対象外	1. 77 (96hr)	2008 年実施 定常状態における濃縮倍率 1 区(13.7μg/L): 2.7 ばく蘇期間における濃縮倍率 2 区(1.37μg/L): ≦14 脂質含有率 開始前 4.32% 終了後 4.23%	

整理番号 K-1762	(NEDO 337, 5-3090)	分解度試験	分解度試験	分解度試験
3', 6'-ビス(ジエチルアミノ)	- スピロ[イソベンゾフラン-	事業対象年度 平成17年度	契約 年月日	契約 年 月 日
1 (3 H), 9'-[9 H]キサンテン	ン] - 3 - オン (509-34-2)	試験期間 17. 8.26 ~17.10.11	試験期間 ~	試験期間 ~
		試験装置	試験装置 標 · 揮	試験装置・標・揮
構造式(示性式)・物理化学的性料	犬	試 験 濃 度	試 験 濃 度	試験 濃 度
CH ₂ CH ₃	CH ₂ CH ₃	被験物質 100 mg/L	被験物質 mg/L	被験物質 mg/L
H ₃ CH ₂ C N	O CH ₂ CH ₃	. . . </td <td>汚 泥 ng/L 本試験期間 週間</td> <td>汚 泥 ng/l 本試験期間 週間</td>	汚 泥 ng/L 本試験期間 週間	汚 泥 ng/l 本試験期間 週間
分子式 C ₂₈ H ₃₀ N ₂ O ₃ 純 度*1 ①98.4% ②99.6%	分子量 442.55 外 観 濃い桃色粉末	間接 BOD -3, -2, -2 (0)% 接差 TOC 2, 0, 3 (1)% HPLC 1, 1, 1 (1)%	間 接 直 接	間接上
不純物*1 (物質名, 含有率) ①被験物質のエチル基の1つが 水素になったもの 1.6% ②残り0.4%は不明 融 点 159.9℃	溶解度 (対水, その他) 対水 851 mg/L (25℃) 対アセトニトリル 10 g/L 以上 対メタノール 10 g/L 以上	審査部会 第 5 6 回 18年 7月21日開催 判 定 難分解性	審査部会 第 回 年 月 日開催	審査部会 第 回 年 月 日開催
沸 点 350℃以上 密 度 1. 206 g/cm³ (25℃)	1 ーオクタノール/水分配係数 log Kow = 6.63*2	備 考 1. 回収率 [※] (水 +被験物質)系 100%	備考	備考
LD50 IRチャートの有無 有 ・無	安定性	(汚泥+被験物質)系 100% ※試験液を直接分析機器に導入。		
用途		2. 実施機関 ・財団法人 化学物質評価研究機構		
試料購入先 MP Biomedical 経済産業公報発表年月日	ls, Inc. 年 月 日	3. 特記事項 ・分解度の平均値が負の値に算出 されたため、Oと表記した。		
	*2 Kowwin v 1.67による計算値。	①分解度試験 ②濃縮度試験		

濃	縮度試	 【験		事業	———— 类対象年度	至 平成	19年月	¥	一遭	福度試験	 }				年	. 月		日		 		 Т			
 	験期間			20.					┼							— H	j 					#	基性		
L								3. 27	₩	試験期間 ~ ~ — — — — — — — — — — — — — — — — —										依	年	月	Ħ		
試	験装置	標)・揮	LC50 (i	直 >10.0 m	ng/L (96h	ɪ)魚種	(ヒメダカ)	討	験装置	標・	揮 LC50	値	ng,	/L (h	r) 魚種	()	ī						
水	水槽設定濃度 (μg/L)							水槽設定濃度 ()											頼						
分散剤						分散剤								•				-							
	被験物質		HCO-40	ハルジ	メチルアミド		1	,		被験物質									経	過					
笙	1 濃度	IX	1	0	50	500			49		7														
									┼—								<u> </u>								
弗	2 濃度	X		1	. 5	500	000		第	52 濃度区	Σ	<u>.</u>													
第	3 濃度	区							筹	3濃度区	ζ				·										
濃	縮倍	率		脂質含有	東 第四 第四 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二	前 2.87 ¥ 1.94	% % 魚和	重(コイ)	濃	縮倍	—— 軺	脂質含	有率。	開始前		% % 角種	L 随 ()							
-								後 28 日後	1			日後		後後	日後			日後							
第	水槽濃度	(μg/	L)	10. 4	10. 5	9. 86	9. 83			水槽濃度	()	1				_								
7	倍	率		≦ 0.91		≤ 0.91	≦ 0. 9		第	倍	率														
\dashv				≤ 0.91		≦ 0. 91	≦0.9						 				_ _								
第2	水槽濃度	(μg/		1. 06 ≤9. 1	1. 04 ≤9. 1	1.00 ≤9.1	1.01		第	水槽濃度(()					_								
2	倍	率	- ⊢	≥ 9. 1 ≤ 9. 1	≥9. 1 ≤9. 1	≥9. 1 ≤9. 1	≦ 9. ∶		2	倍	率		 	+			+								
+	水槽濃度	(7	= 3. 1	25.1	<i>⊒ J.</i> 1	= J.	== 3. 1	_	水槽濃度(· ·	, 	+												
第 3								 	第			<u></u>	-	_											
3	倍	率	r						3	倍	率		 				+								
審	査部会	第	7 9	9 回 2	20年 1	0月	24日	開催	審	査部会	第	—· 回	年		月		開	催							
和	定結果				 				本日	 定結果															
	たね <u>木</u> 				· · · · · · · · · · · · · · · · · · ·	·																			
•				1. 11 1. · · · · · · · · · · · · · ·					備 	考															•
[]	ばく露期間	間におり	る濃縮		1 濃度区 2 濃度区													.*							
[[回収型	室]		帝	∠ 假反应 【定量下】		Λ Ι'																		
	試験水	• •		97. 8%	試験水	第1濃度																			
	111 = B 4-			0.1.05	, m < s.t.	第2濃度		018μg/L																	
	供試魚 a 佐 幽 胆	al B+	EII VIII		人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人 人	正空 松 世		3ng/g																	
ξ] —	た肥 愧 侠	NH LI	山 仏.	八 16字	物質評価の	yy 无愧情 	·	·												 · .		 <u> </u>			

化 合 物 名 (CAS 番号)	構造式	官報公示 整理番号 (K-番号)	分 解 度 (%)	分解 判定 (年)	分配係数 (log Pow)	LC50 mg/L (ヒメダカ)	濃 縮 倍 率	濃縮 判定 (年)
3,3-ビス(p-ジメチル アミノフェニル)-6-ジ メチルアミノフタリド (1552-42-7)	H ₁ C N CH ₁ H ₁ C N CH ₁	5-0129 (K-1338)	標準(4W) 1997年実施 BOD 0, 0, 0 (0) HPLC 0, 4, 0 (1)	難分解性(1997)	1999 年実施 5. 27 (フラスコ振とう法)	>80.0 (48hr)	1999 年実施 1 区(50μg/L):500~1300 2 区(5μg/L):636~1670 脂質含有率 4.1%	高濃縮性 ではない (1999)
2 - (3 - ジエチルイミニ オー6 - ジエチルアミノー 3 H-キサンテンー 9 - イル)安息香酸=クロリド (3375-25-5)	$(CH_3CH_2)_2N$ O $N^{+}(CH_2CH_3)_2$ $COOH$	5-1973 5-4056 (K-847)	標準(4W) 1987年実施 BOD 0, 0, 0 (0) TOC 3, 2, 0 (2) VIS(555nm) 8, 8, 5 (7)	難分解性 (1987)	1987 年実施 1. 9~2. 0	33. 9 (48hr)	1987 年実施 1 区(100μg/L): <0.2 2 区(10μg/L): <1.7 脂質含有率 3.9%	高濃縮性 ではない (1987)
3', 6'-ビス(ジェチル アミノ)-スピロ[イソ ベンゾフラン-1(3 H), 9'-[9 H]キサンテン]- 3-オン (509-34-2)	CH ₂ CH ₃ CH ₂ CH ₃ H ₃ CH ₂ C N CH ₂ CH ₃	5-3090 (K-1762)	標準(4W) 2005年実施 BOD -3, -2, -2 (0)*1 TOC 2, 0, 3 (1) HPLC 1, 1, 1 (1)	難分解性(2006)	6. 63*2	>10.0 (96hr)	2008 年実施 ばく露期間における濃縮倍率 1 区 (10μg/L): ≦0.91 2 区 (1μg/L): ≦9.1 脂質含有率 開始前 2.87% 終了後 1.94%	
ジナトリウム= 2 - (6 - オキシド-3-オキソー3 H-キサンテン-9 - イル)-ベンゾアート(518-47-8)	NaO ONa	5-1416 (K-1825)	標準(4W) 2008年実施 BOD -2, 0, 1 (0)*1 TOC 0, 1, 1 (1) HPLC 1, 1, 1 (1)	難分解性 (2008)	測定不可	>200 (96hr)	2008 年実施 定常状態における濃縮倍率 1 区(0.46 mg/L): ≦0.27 2 区(0.046mg/L): ≦2.7 脂質含有率 開始前 2.94% 終了後 4.14%	高濃縮性 ではない (2008)
3 - (N - シクロヘキシ ル- N - メチルアミノ) - 6 - メチルー 7 - アニリ ノフルオラン (55250-84-5)	H ₃ C N O CH ₃	5-3631 (K-1655)	標準(4W) 2003年実施 BOD -8, -6, -3 (0)*1 HPLC 0, 0, 0 (0)	難分解性 (2003)	8.60*2	>15.0 (96hr)	2005 年実施 定常状態における濃縮倍率 1 区(10µg/L): 2400 2 区(1µg/L): 2500 脂質含有率 開始前 2.58% 終了後 3.80%	高濃縮性 ではない (2005)

^{*1} 分解度の平均値が負の値に算出されたため、0と表記した。 *2 Kowwin v 1.67による計算値。