causes of vasovagal syncope. 30-34 Laboratory studies suggest that AMT may help prevent syncopal and presyncopal reactions by increasing blood pressure and cerebral blood flow and oxygenation. 31,35-39 **Table 2**. Summary of Reductions in Donor Reactions Observed as a Function of Applied Muscle Tension vs Standard Donation Control | Study | Muscle
Tension | Control | Change | |---------------------------------------|---------------------------------|---------------------|--------| | Ditto et al ²¹ (2003) | 4.9
(BDRI units) | 6.3
(BDRI units) | ↓22% | | Ditto et al ²² (2003) | All donors = 0.43
(log BDRI) | 0.47
(log BDRI) | ↓8% | | | Female donors = 0.44 (log BDRI) | 0.55
(log BDRI) | ↓20% | | Ditto and France ²³ (2006) | 0.35
(log BDRI) | 0.45
(log BDRI) | ↓22% | | Ditto et al ²⁴ (2007) | 0.42
(log BDRI) | 0.52
(log BDRI) | ↓19% | <u>Note</u>: The BDRI, or Blood Donation Reactions Inventory, is a self-report measure of donor reactions such as faintness, dizziness, weakness, etc. Elevations on this scale predict donor non-return over and above the effect associated with reactions recorded on the donor record. #### Recommendations Based on existing evidence that AMT is easy to learn, safe to use, and effective at reducing or averting presyncopal reactions in young donors, donor and staff instruction in this technique is recommended. Different approaches are possible but should be focused on tensing the large muscles of the legs and abdomen during donation. Further study is encouraged to evaluate the effectiveness of the intervention in reducing reactions and injuries after donation. # V. Automated Red Cell Collection The safety of automated collection of Red Blood Cells (RBCs) has been compared to whole blood donation. In the American Red Cross experience, the vast majority of adverse reactions to Whole Blood (WB) and 2-unit RBC donation were minor, systemic complications (eg, prefaint, citrate reactions). The overall rate of complications was marginally greater for 2-unit RBCs than for WB collections (320.3 vs 274.5 per 10,000 collections; odds ratio, 1.17 (95% CI, 1.15 to 1.20). Table 3. Risk Factors for Donation-Related Complications* | Demographic
Characteristic | Reaction Rate
(/1,000
donations) | Unadjusted Odds
Ratio (95% CI) | Adjusted Odds Ratio [†] (95% CI) | |--------------------------------------------------|----------------------------------------|-----------------------------------|-------------------------------------------| | Blood volume < 3500 mL [‡] | 34.9 | 4.47 (4.10-4.88) | 2.88 (2.57-3.23) | | Age = $17-18 \text{ years}^{\ddagger}$ | 39.6 | 4.19 (3.94-4.45) | 2.78 (2.59-2.98) | | Age = $19-24 \text{ years}^{\ddagger}$ | 27.4 | 2.87 (2.68-3.06) | 2.39 (2.23-2.56) | | First-time donor [‡] | 27.5 | 2.80 (2.66-2.94) | 2.20 (2.07-2.33) | | Race = Caucasian ethnicity [‡] | 14.3 | 3.42 (2.63-4.46) | 2.15 (1.64-2.82) | | Blood volume = $3500-4000 \text{ mL}^{\ddagger}$ | 23.5 | 2.97 (2.77-3.17) | 2.09 (1.90-2.31) | ^{*}Donor reaction rates and odds ratios of combined mild, moderate, and severe reactions by donor characteristics compared to donors without reactions.² However, the rate of major systemic complications (loss of consciousness, loss of consciousness with injury, prolonged recovery, major citrate) in 2-unit RBC donations was lower compared to the rate in WB donations; in particular, for donors <20 years [odds ratio, 0.41 (95% CI, 0.32 to 0.53)]. Blood Systems demonstrated that manual WB collections have a low incidence of moderate and severe reactions (47.1 per 10,000 collections, 0.47%). Single-unit RBCs collected by apheresis have the same safety profile (37.44 per 10,000 collections, p > 0.20). Two-unit RBC collections by apheresis and plateletpheresis collections have a significantly lower reaction rate (15.65 per 10,000 collections, p < 0.00005; and 14.84 per 10,000 collections, p < 0.00005, respectively). Automated 2-unit RBC collections have a favorable safety profile compared to whole blood collections, with a lower risk of major systemic complications compared to whole blood donation. This benefit is most pronounced among young and first-time donors, providing a rationale for further study and for possibly expanding apheresis red cell donation programs in colleges and high schools. The apparent safety advantage of 2-unit RBC collections may be attributed to the saline replacement during such procedures or to the more stringent criteria for such donations (the hematocrit, height, and weight criteria used to select donors for 2-unit RBC donations are designed to select donors with larger red cell or total volumes than whole blood donors of smaller stature). Further analysis is needed to tease out the true impact of volume replacement. [†]Includes age group, gender, donation history, race/ethnicity, estimated blood volume, pulse, systolic blood pressure, and blood center as covariates. [‡]Compared to the reference group: blood volume >4775 mL; age 25-65; repeat donor, and Black, non-Hispanic ethnicity. #### Recommendations The available evidence supports further study of expanding apheresis red cell donation programs in high schools and colleges. # VI. Postreaction Instructions to Donors and Parents Donor centers must have procedures for postreaction care of donors (Standard 5.3.2.1).⁴² Measures to improve communication with parents/guardians or school nurses may decrease the likelihood of delayed reactions after leaving the site, and donor centers should consider the following aspects: - Communication with parents/guardians that the donor experienced a loss of consciousness or other reaction or injury, in accordance with state laws. - Blood centers should ensure that donors who have had a reaction receive continued care while they are still at the collection site and after they reach home. #### **Conclusions and Future Directions** Blood centers should recognize all the dimensions of the donation experience that affect the risk of complications and consider one or more of the measures discussed in this report to enhance safety on high school drives. Blood centers should also monitor the effectiveness of their efforts to gauge progress and further refine their policies and procedures to protect donors and ensure a good donation experience. Although most donations are uneventful, even a minor complication reduces the likelihood of return donation. Serious injury following blood donation occurs infrequently among all donor age groups, but adolescent donors are disproportionately affected compared to older adults. In one study, the risk of syncope-related injury among 16- and 17year-donors was 5.9 per 10,000 donations compared to 0.4 per 10,000 donations by individuals 20 years or older (odds ratio, 14.46; 95% CI, 10.43-20.04). Although the initiatives that have been defined in this report to reduce donor reactions are predicted to also prevent some injuries, the actual benefit of any specific action may be difficult to measure given the rarity of the occurrence of donor injuries. Currently, it is also impossible to compare reaction rates across donor centers because of inconsistent definitions of what constitutes a reaction, different reporting criteria, and variability in how individual phlebotomists recognize and report adverse reactions. AABB's effort to establish a national hemovigilance program in the United States will provide not only a uniform reporting structure for adverse events after blood donation but also the mechanism to monitor the effectiveness of efforts to prevent the rare, but more medically serious, donation-related complications. Although zero risk may not be attainable even in adults, the rate of complications in minors calls for ongoing attention to a sustained operational effort that is continually focused on donation safety. #### References 1. Trouern-Trend JJ, Cable RG, Badon SJ, et al. A case-controlled multicenter study of vasovagal reactions in blood donors: Influence of sex, age, donation status, weight, blood pressure, and pulse. Transfusion 1999;39:316-20. - 2. Wiltbank T, Giordano G, Kamel H, et al. Faint and prefaint reactions in whole-blood donors: An analysis of predonation measurements and their predictive value. Transfusion 2008 (in press). - 3. Eder AF, Dy BA, Kennedy JA, et al. The American Red Cross Donor Hemovigilance Program, complications of donation reported in 2006. Transfusion 2008 (in press). - 4. Newman BH. Blood donor complications after whole-blood donation. Current Opin Hematol 2004;11:321-2. - 5. Newman BH, Satz SL, Janowicz NM, Siegfried BA. Donor reactions in high-school donors: The effects of sex, weight, and collection volume. Transfusion 2006;46:284-8. - 6. Eder AF, Hillyer CD, Dy BA, et al. Adverse reactions to allogeneic whole blood donation by 16- and 17-year-olds. JAMA 2008;299:2279-86. - 7. France CR, Rader A, Carlson B. Donors who react may not come back: Analysis of repeat donation as a function of phlebotomist ratings of vasovagal reactions. Transfus Apher Sci 2005;33:99-106. - 8. Rader AW, France CR, Carlson B. Donor retention as a function of donor reactions to whole-blood and automated double red cell collections. Transfusion 2007;47:995-1001. - 9. Custer B, Chinn A, Hirschler NV, et al. The consequences of temporary deferral on future whole blood donation. Transfusion 2007;47:1514-23. - 10. France CR, Montalva R, France JL, Trost Z. Enhancing attitudes and intentions in prospective blood donors: Evaluation of a new donor recruitment brochure. Transfusion 2007;48:526-30. - 11. Stewart KR, France CR, Rader AW, Stewart JC. Phlebotomist interpersonal skill predicts a reduction in reactions among volunteer blood donors. Transfusion 2006;46:1394-401. - 12. Newman B, Tommolino E, Andreozzi C, et al. The effect of a 473-mL (16-oz) water drink on vasovagal donor reaction rates in high-school students. Transfusion 2007;47: 1524-33. - 13. Kakaiya R, Burns S, Dausch D. Comparison of systemic reactions among blood donors with 450 mL and 500 mL whole blood donation (abstract). Transfusion 2005;45(Suppl):88A. - 14. Bianco C, Robins JL. Whole blood collection volumes and donor safety: Equivalence between 450 mL and 500 mL collection sets (abstract). Transfusion 1994;34(Suppl):15S. - 15. Tomasulo PA, Anderson AJ, Paluso MB, et al. A study of criteria for blood donor deferral. Transfusion 1980;20:511-18. - 16. Bonk VA, France CR, Taylor BK. Distraction reduces self-reported physiological reactions to blood donation in novice donors with a blunting coping style. Psychosom Med 2001;63:447-52. - 17. Hanson SA, France CR. Predonation water ingestion attenuates negative reactions to blood donation. Transfusion 2004;44:924-8. - 18. Schroeder C, Bush VE, Norcliffe LJ, et al. Water drinking acutely improves orthostatic tolerance in healthy subjects. Circulation 2002;106:2806-11. - 19. Lu CC, Diedrich A, Tung CS, et al. Water ingestion as prophylaxis against syncope. Circulation 2003;108:2660-5. - 20. Claydon VE, Schroeder C, Norcliffe LJ, et al. Water drinking improves orthostatic tolerance in patients with posturally related syncope. Clin Sci (Lond) 2006;110:343-52. - 21. Ditto B, Wilkins JA, France C R, et al. On-site training in applied muscle tension to reduce vasovagal reactions to blood donation. J Behav Med 2003;26:53-65. - 22. Ditto B, France CR, Lavoie P, et al. Reducing reactions to blood donation with applied muscle tension: A randomized controlled trial. Transfusion 2003;43:1269-75. - 23. Ditto B, France CR. The effects of applied tension on symptoms in French-speaking blood donors: A randomized trial. Health Psychol 2006;25:433-7. - 24. Ditto B, France CR, Albert M, Byrne N. Dismantling applied tension: mechanisms of a treatment to reduce blood donation-related symptoms. Transfusion 2007;47:2217-22. - 25. Kozak MJ, Montgomery GK. Multimodal behavioral treatment of recurrent injury-scene-elicited fainting (vasodepressor syncope). Behav Psychother 1981;9:316-21. - 26. Ost LG, Fellenius J, Sterner U. Applied tension, exposure in vivo, and tension-only in the treatment of blood phobia. Behav Res Ther 1991;29:561-74. - 27. Ost LG, Sterner U. Applied tension. A specific behavioral method for treatment of blood phobia. Behav Res Ther 1987;25:25-9. - 28. Ost LG, Sterner U, Fellenius J. Applied tension, applied relaxation, and the combination in the treatment of blood phobia. Behav Res Ther 1989;27:109-21. - 29. Peterson AL, Isler WC 3rd. Applied tension treatment of vasovagal syncope during pregnancy. Mil Med 2004;169:751-3. - 30. Croci F, Brignole M, Menozzi C, et al. Efficacy and feasibility of isometric arm counterpressure manoeuvres to abort impending vasovagal syncope during real life. Europace 2004; 6:287-91. - 31. Krediet CT, van Dijk N, Linzer M, et al. Management of vasovagal syncope: controlling or aborting faints by leg crossing and muscle tensing. Circulation 2002;106:1684-9. - 32. Ten Harkel AD, van Lieshout JJ, Wieling W. Effects of leg muscle pumping and tensing on orthostatic arterial pressure: A study in normal subjects and patients with autonomic failure. Clin Sci (Lond) 1994;87:553-8. - 33. van Dijk N, Quartieri F, Blanc JJ, et al. Effectiveness of physical counterpressure maneuvers in preventing vasovagal syncope: The Physical Counterpressure Manoeuvres Trial (PC-Trial). J Am Coll Cardiol 2006;48:1652-7. - 34. van Lieshout JJ, ten Harkel AD, Wieling W. Physical manoeuvres for combating orthostatic dizziness in autonomic failure. Lancet 1992;339:897-8. - 35. Brignole M, Croci F, Menozzi C, et al. Isometric arm counter-pressure maneuvers to abort impending vasovagal syncope. J Am Coll Cardiol 2002;40:2053-9. - 36. Foulds J, Wiedmann K, Patterson J, Brooks N. The effects of muscle tension on cerebral circulation in blood-phobic and non-phobic subjects. Behav Res Ther 1990;28:481-6. - 37. France CR, France JL, Patterson SM. Blood pressure and cerebral oxygenation responses to skeletal muscle tension: A comparison of two physical maneuvers to prevent vasovagal reactions. Clin Physiol Funct Imaging 2006;26:21-5. - 38. Kim KH, Cho JG, Lee KO, et al. Usefulness of physical maneuvers for prevention of vasovagal syncope. Circ J 2005;69:1084-8. - 39. van Dijk N, de Bruin IG, Gisolf J, et al. Hemodynamic effects of leg crossing and skeletal muscle tensing during free standing in patients with vasovagal syncope. J Appl Physiol 2005;98:584-90. - 40. Eder AF, Dy BA, Kennedy J, Benjamin RJ. The relative safety of automated red cell procedures and allogeneic whole blood collection in young donors. J Clin Apher 2007;22:53. - 41. Wiltbank TB, Giordano GF. The safety profile of automated collections: An analysis of more than 1 million collections. Transfusion 2007;47:1002-5. - 42. Price TH, ed. Standards for blood banks and transfusion services. 25th ed. Bethesda, MD: AABB, 2008:20. # Appendix 2. # Recommended Initiatives Concerning Education and Consent for Adolescent Blood Donors Contributing Authors: Mary Townsend, Terry Perlin, and Jed Gorlin for the AABB Younger Donors Adverse Reaction Working Group, Robert Jones, MD, Chair # I. Initiatives to Improve Education of Adolescent Donors, School Personnel, and Parents ### A. Adolescent Donors # **Objectives** - 1. To reduce reactions and injuries of high school donors by educating them about maneuvers to prevent common reactions and injuries resulting from such reactions. - 2. To identify elements for inclusion in predonation materials designed to reduce anxiety and provide coping techniques, thereby reducing reactions and injuries. #### Background Although many aspects of blood collection (such as screening, labeling, and testing) are highly regulated and standardized across collection facilities, many other facets of the collection process are unregulated and vary widely, such as the multitude of materials supplied to donors for recruitment and educational purposes. Specific challenges arising from the collection of blood from an adolescent population, including the high rate of reactions, may be addressed by improvements in predonation education of the adolescent donor to allay anxiety associated with the blood donation process and to promote coping skills. The association of predonation anxiety with increased rates of vasovagal reactions is well documented. Labus et al used the Medical Fears Survey to assess the association of anxiety with the likelihood of fainting in a group of 364 volunteer blood donors and found that high scores best predicted fainting in first-time and experienced female donors. Efforts to address common donor fears and provide useful coping suggestions through predonation education were associated with improved scores on questionnaires that assessed donor attitudes, anxiety, self-efficacy (the belief that one has the capability to manage a situation), and intentions toward blood donation. Studies to evaluate the effect of educational materials on the frequency of reactions are under way. # Recommendations Although no published studies evaluate the effectiveness of donor educational material in reducing reactions, studies associating anxiety and fear with an increased rate of reactions suggest that interventions, including education, to reduce anxiety should have a positive effect. Therefore, predonation educational materials can be considered part of the consent process, so that information pertinent to the donation process, possible reactions, and interventions is imparted before the adolescent makes the decision to donate. Educational materials for high school donors will likely have a greater effect if they are designed with age-appropriate language and graphics. In addition, educational materials may be presented in adolescent-friendly formats such as videos. Regardless of the format, elements to be considered for inclusion in predonation materials for students include the following: - A general statement to the effect that most donors have uneventful donations and that most reactions, when they occur, are minor. - A statement identifying which donors may be at increased risk for a reaction (eg, young, first-time, female, or low-weight donors) and why. - A brief description of the donation process to alleviate anxiety about the unknown for first-time donors. - Descriptions of possible techniques to prevent reactions and enhance coping skills. Also, a brief explanation of the possible benefit of each technique may boost compliance. Common techniques that have been used include the following: - o Predonation hydration. - o Receiving adequate sleep. - o Receiving adequate nutrition. - o Avoiding alcohol before and after donation. - o Using applied muscle tension. - o Using distraction techniques. - o Using progressive recovery techniques (eg, dangling legs). - o Complying with postdonation instructions and spending adequate time in the canteen. - o Avoiding strenuous physical activity after donation. - o Acknowledging anxiety and alerting blood collection staff of anxious feelings. - o Becoming informed and asking questions. - Statements describing blood collection facility policies on parental consent and confidentiality regarding test results, if applicable. #### **B.** Parents of Adolescent Donors #### Objectives - 1. To involve parents by educating them about ways to reduce donation risk for their adolescent children. - 2. To involve parents by educating them about the handling and treatment of reactions and involving them in decision-making when reactions occur. #### Background Parents of adolescent blood donors are in a unique position both to participate with their children in the decision to donate blood and, if reactions occur, to provide any needed care after their children return home. # Recommendations It may be helpful to provide parents with information about blood donation, possible adverse reactions, and parental involvement in the event of an adverse reaction, even if parental consent for the donation is not required. The following should be considered for parental educational materials: - Materials should include the same informational elements as student educational materials. - Materials may include specific statements regarding the confidentiality of donor information, as applicable. - Materials may include general instructions for supporting donors after common reactions such as hematomas or vasovagal episodes. - Materials may be provided to the parent with consent documents when such documents are required. # C. School Personnel ### **Objectives** - 1. To involve school personnel by educating them about ways to reduce donation risk for their adolescent students. - 2. To involve school personnel by educating them about the handling and treatment of reactions and involving them in decision-making when reactions occur. ### **Background** As employees of the school district, school health personnel have responsibility for the health of students on campus and, therefore, may serve as integral partners with the blood collection facility in the care of student donors. These health personnel may be involved in donor reactions either during the blood drive or after the collections staff have left the collection site. In either case, school personnel may have specific responsibilities to the student and parent in cases of student injury. Education of school personnel about the general process of blood donation, the possible reactions, and appropriate interventions and treatment is likely to be well received. Articles specific to blood donation and reactions are needed in the school health literature. #### Recommendations Blood collection facilities are encouraged to communicate with school officials before high school blood drives to establish policies and delineate responsibilities for student care during and after the blood drive. It may be useful for blood collection facilities to develop educational materials that target school health personnel; elements for consideration include the following: - A general statement to the effect that most donors have uneventful donations and that most reactions, when they occur, are minor. - A statement about which donors may be at increased risk for a reaction (eg, young, first-time, female, or low-weight donors) and why. - A brief description of the donation process. - A description of signs and symptoms of common donor reactions. - A brief description of the appropriate handling of common donor reactions. - A statement delineating the responsibilities of blood center personnel and school health personnel. - A statement regarding confidentiality and release of information to parents, if applicable. # II. Initiatives to Address Consent Issues Specific to Adolescent Donors # **Objectives** - 1. To provide blood collection facilities with information specific to informed consent of minor/adolescent donors. - 2. To consider addressing increased rates of reactions in this age group in the informed consent process. #### Background The ethical substance of informed consent incorporates the fundamental principles of autonomy, veracity, beneficence, and nonmaleficence. The application of informed consent principles for both blood donors and blood recipients has been thoroughly addressed through peer-reviewed journal articles⁶⁻⁸ and AABB publications. 9,10 However, the collection of blood from 16- and 17-year-old minors presents particular dilemmas and challenges with regard to traditional notions of informed consent. Many states have long allowed 17-year-olds to consent to donate by specific state statute, but these statutes are silent on the issue of the minor's right to consent to subsequent medical treatment for an adverse reaction. Therefore, the consent process should take into account applicable state law provisions. States that allow 16-year-olds to donate often require parental permission/consent. This situation allows the process of donation but does not imply any emancipated status because of the requirement for parental permission. Although 16- and 17-year-olds are sometimes recognized by state law as having the decisional skills necessary for making informed health-care decisions, parents and guardians still have legal responsibility, absent state law provisions to the contrary. This ambiguity is often handled by including the additional concept of assent, the notion that minors should be involved in health-care decisions in age-appropriate and developmentally appropriate ways. 8 Specific issues arise when applying this distinction to blood donation. Blood collection facilities have traditionally adhered strictly to practices of confidentiality in notification of blood donors, including minors, of positive test results. Such policies need to be reviewed by blood collectors with specific attention to state statutes. The research setting presents similar issues. Minors are generally prohibited from participating in research without parental permission; however, blood collection facilities may perform certain required or elective tests under research protocols that have been approved by an institutional review board, and such protocols address the requirements for consent applicable to minors. Because statutes governing informed consent are state specific, blood collection facilities are urged to consult legal counsel when addressing consent issues regarding minors. In summary, it is vital to remember that consent is *not* a simple signature on a form, but a broader process that involves education of the donor and, in some cases, the parent. Providing adolescent donors (and parents) with information regarding the donation process and possible consequences meets an essential requirement of informed consent. ### Recommendations Blood collection facilities should consider the following: - Consulting state statutes regarding age and consent requirements. - Becoming familiar with the literature specific to adolescent/minor consent and assent. 7,8 - Providing information to both donors and parents as part of the consent process. (Some facilities provide a parental consent form that functions as both informational brochure and consent documentation, when applicable.) - Incorporating information specific to increased rates of reactions among groups such as young and first-time donors into the informed consent process. - Incorporating statements concerning the release of information to parents about medical care for reactions and positive test results, as applicable. #### References - 1. Graham DT. Prediction of fainting in blood donors. Circulation 1961;23:901-6. - 2. Callahan R, Edelman EB, Smith MS, Smith JJ. Study of the incidence and characteristics of blood donor "reactor." Transfusion 1963;3:76-82. - 3. Labus J, France CR, Taylor BK. Vasovagal reactions in volunteer blood donors: Analyzing the predictive power of the Medical Fears Survey. Int J Behav Med 2000;7:62-72. - 4. Kleinknecht RA, Thorndike RM. The Multilation Questionnaire as a predictor of blood/injury fear and fainting. Behav Res Ther 1990;28:429-37. - 5. France CR, Montalva R, France JL, Trost Z. Enhancing attitudes and intentions in prospective blood donors: Evaluation of a new donor recruitment brochure. Transfusion 2008;48:526-30. - 6. Alaishuski LA, Grim RD, Domen RE. The informed consent process in whole blood donation. Arch Pathol Lab Med 2007;132:947-51. - 7. Kuther TL. Medical decision-making and minors: Issues of consent and assent. Adolescence 2003 Summer;38:343-58. - 8. American Academy of Pediatrics Committee on Bioethics. Informed consent, parental permission, and assent in pediatric practice. Pediatrics 1995;95:314-17. - 9. Burch JW, Uhl L. Guidelines for informed consent in transfusion medicine. Bethesda, MD: AAB, 2006. - 10. Stowell CP, Sazama K, eds. Informed consent in blood transfusion and cellular therapies: Patients, donors, and research subjects. Bethesda, MD: AABB Press, 2007. 米国血液銀行協会 世界の輸血・細胞療法の発展 協会報 No.08-04 日付: 2008年8月28日 宛先: AABB 会員各位 差出人: J.Daniel Connor, MM, 会長 Karen Shoos Lipton, JD, 最高責任者 件名: 若年献血者の副作用及び傷害を軽減する方策について この協会会報には、20歳未満の献血者の傷害及び有害反応のリスクを緩和する方策に関する会員向け情報が含まれる。AABBは、高校及び大学での移動献血の刷新を期待し、本会報を発行している。採血施設は、この献血者集団における傷害及び副作用の発生を軽減するため、いくつかのこれらの方針の実施を検討するとよいと思われる。 協会会報は、AABB 理事会が配布を承認したものであり、承認のための要件や基準の発表、新しい傾向またはベストプラクティスに関する勧告、関連情報などを含むことができる。本会報には、具体的な勧告は含まれず、基準や承認要件を作成するものではない。これは、AABB 若年献血者副作用作業部会の報告書に基づいている。同部会は、医師、看護師、運営者、広報及び法律専門家や米国血液銀行協会(AABB)、米国血液センター(America's Blood Centers)、米国赤十字社、米国血液センター(Blood Centers of America)からの代表者を含む。作業部会は入手された情報を検討及び協議し、現在の実践に基づき、1)若年献血者における副作用の軽減、2)副作用に関連した献血者の傷害の解消、3)若年献血者に関連した献血者教育及び同意の問題への対応、という三つの目標を取り上げた。これらの報告書の全文は、本会報の付属文書1と付属文書2に盛り込み、これらの目標を達成する可能性のある数多くの方策について記載している。いくつかの示唆された介入は、研究やデータの裏づけがあるが、その他については一般的な行為や期待される行為であり、ここに記載した目標を達成することを確証するものではない。 #### 背景 自発的献血は、国の血液供給の礎である。献血は、16歳(州法が認める)から75歳以上またはそれ以上の年齢幅にある健康な集団から募る。年齢の高い献血者からの献血は、個人の健康問題やその他の適格性を阻む壁によって減少しているため、過去数年間、採血施設は若年献血者からの献血をより重要視してきた。採血施設からの報告によると、現在米国のすべての全血採血のうち、10~20パーセントは20歳未満の献血者から採取したものであるという。16歳に献血資格を認める州では、この年齢群からの献血割合はさらに高くなっている。この献血層の伸びは、高校における移動献血の増加と関係している。高校生の献血者は一般に、多くの理由で献血の機会を受け入れる。その理由の中には、献血が「通過儀礼」であるという感覚、献血に関する医学的・ 技術的側面への関心、多くの場合授業を免除される、などがある。また、延期率が低く、若いうちに献血を経験することにより、将来引き続き献血を行う可能性が高くなることから、理想的な献血者であるともいえる。 若年献血者及び高校における移動献血からのデータが蓄積されるにつれ、この献血者群の副作用率は他に比べてより高いことが判明し、ある研究によると成人の率の 5 倍も高いことが報告されている。傷害に至るまでの重篤な失神反応が献血者に生じることは稀であるが、このグループでは比較的高くなる。さらに、年齢は、副作用リスクと反比例するようである。最近のいくつかの研究で、この現象や副作用を軽減する各種の方策について報告されている。こういった結果が公表され、採血施設はこの問題に対する関心を高めている。このような新しい情報を認識し、献血者の安全を確保し、献血経験を満足させることの重要性を理解することで、採血施設は若年献血者の安全性を確保する取り組みを行なっている。 # 献血者の副作用 献血の圧倒的多数は問題なく、副作用や不快症状もない。しかし、少数の献血者は静脈穿刺部位にあざや出血が生じたり、怪い吐き気、またはめまい、気絶前症状、気絶または失神による虚脱またはひきつけなど、意識に変化が生じる。作業部会は、失神等、献血者が転倒した場合に傷害に至る可能性がある意識反応の変化をとくに重視している。献血後、合併症リスクに影響を及ぼすいくつかの因子として、反応に対する献血者の先天的な特徴や体質、採血職員のスキルと経験、移動献血の設定場所及び環境の特性、及び献血前後の献血教育が挙げられる。 文献、発表研究、及び採血施設の経験から、全血献血後の高い失神併発率は、献血者の特徴と相関することが報告されている。こうした特徴には、若年齢、初回献血、低体重、低血液量、女性、白人の民族性などが挙げられる。若い年齢、総血液量と初回献血の状況は、失神反応の主要な決定要素であり、独立したリスク因子である事が知られている。 これらの誘発因子を考慮し、作業部会は以下等の副作用の怪滅対策に関する多くの現場体験や文献報告を検討した。 - 献血前教育。この分野の対処は、献血により生じる可能性のある不快症状の内容や対処方法に関する献血者の理解に影響を及ぼす。この分野は、献血者教育の下で、さらに具体的に記載されている。 - 移動献血の環境及び設置。移動献血の設置に関する最も良い実践については、利用可能な発表されているデータや情報はほとんどないが、作業部会は適当な換気、電気コンセント、副作用を管理するための健康診断スペースの重要性を認識している。具体的な対策として、以下のものが協議された。 - 1 作業を支持し、許容できる状況を確保するための設置場所選定手順および、その条件が不 適当になった場合の作業の中断に関する手引書。 - 2 献血者の流れの管理及びスタッフまたはボランティアの適当な配置。 - 3 継続した回復方策のためのスペースがある献血環境の存在。 - 4 献血者への付き添い。特に、イス・ベッドから献血後の場所(食堂)まで。 - 5 栄養補給・水分補給のための献血前の区域。 - 6 献血後の簡易食堂/軽食区域。 - 7 食堂区域で、献血副作用を見分ける訓練を受けた適当な職員またはボランティアを配置。 - 8 不安や気分不良を感じるかもしれない献血者の回復のための別エリア。 リストした方法に関連する追加的な実践及び情報については、付属の報告書に記載されている。 - 職員の管理及び採血者の技術。採血職員に対する訓練と管理は、すべての移動献血の成功と 献血者の安全に不可欠である。高校における移動献血では特に、特別なあるいは経験豊富な スタッフを配置することにより、献血者の副作用の影響と割合を怪滅することができるかも しれない。採血施設は、副作用の管理に関して、採血職員の配置、教育訓練、及び仕事ぶり を定期的に精査するべきである。 - 介在。 採血副作用、とくに若年献血者の副作用を防止するために、現在現場でさまざまな 実践が行われている。実践は発展しているが、採血施設は以下の方策を検討し、評価すべき である。 - 1 献血者のサイズ/年齢の基準。現在の適格性要件である最低体重 110 ポンド (約 50 kg)、全血 採血の上限 10.5 mL/kg は、献血者の多くを保護するのに十分である。これらの基準は、献血 者の血液量の 15%を超えて採取することを妨ぐという推定に基づいている。一部の採血施設 は、適格な献血者の推定血液量は 3500 mL を超える旨を要件とするために当該基準を変更す ることを検討している。その他の方策としては、若年献血者の最低体重を 120 ポンド (約 55 kg) までに引き上げる、または若年献血者からの採血量を引き下げる、などが挙げられる。 - 2 気分転換の方策。副作用の自己報告の減少に基づき、視聴覚の娯楽などの気分転換の手法は、 採血中の献血者の気分を楽にする効果があることが報告されている。 - 3 水分補給。数例の研究では、水(献血 30 分前、500 mL)を摂取した献血者は、副作用が有意 に減少したことが報告されている。採血施設は、20 歳未満の献血者に飲み物を提供し、献血 前 30 分以内に液体 500 mL を摂取するよう勧めるとよいだろう。 - 4 筋伸張(Applied Muscle Tension; AMT)は、上腕や脚の大筋群を繰り返し、リズミカルに収縮させるもので、若年献血者の失神前反応を怪滅させることが示されている。また、この手法は習得しやすく、安全に使用できる。 - 5 自動採血手順。2単位赤血球の自動採取は、若年及び初回献血者において全血採血に比べ良好で安全な側面を持っている。副作用リスクがより低くなるのは、一部に、生理食塩水の代替によると考えられる。高校及び大学における血液成分分離装置による赤血球採取プログラムの拡大と、更なる研究を推奨する。 6 副作用後の指導。現在の基準では、採血施設は献血者の傷害を治療し、必要に応じて救急医療を提供する手順がなければならない (BB/TS 基準 5.3.2.1)。献血者とその家族に向けた情報を盛り込むよう助言する。この問題は、献血者教育の下にさらに詳細に述べる。 # 副作用の結果生じる献血者の傷害 稀なケースであることから、献血者の副作用から生じる傷害に関する情報は発表されていない。利用可能なデータは、大規模な採血プログラムでの傷害クレームから得ている。現在の推定では、献血 200,000 回に 1 回、重篤な傷害があると予想される。献血者が失神反応を示し、床に倒れ、顔面やその他の骨折及び裂傷を招く際に傷害が生じる。こうした失神反応を軽減することは、すなわちこのような種類の傷害を減らす。その他の環境上及び運営上の方策としては、回復場所において副作用を管理する追加スタッフの使用と訓練を実施することである。また、食堂での観察や付き添い方針の強化、副作用の認識に関する献血者教育も推奨される。回復時の高校生献血者を、転落や傷害を防止するため床マットに座らせることも、評価されているもう一つの方策である。これらの対策の影響の正確な評価は、負傷率に関する情報のさらなる収集を待つところである。 # 献血者の教育 献血前情報、献血の同意、および献血後の問題の管理方法に関する理解は、献血者に満足な献血経験を与え、献血者が将来再び献血することを確実にするために重要である。若年献血者の供血に関しては、異なる背景、期待、法的問題があるので、献血者教育と同意は特別な重要性を帯びている。高校における移動献血には、教育、法的責任、及び親/保護者の関与に関する追加的な問題が含まれる。 献血前の不安は、副作用率の増加に関連する。共通の献血者の不安に対処し、有用な対処方法を示唆することは、供血者の不安を和らげ、自己有効性(ある状況を管理する能力が自分にあるという確信)への姿勢や、献血に対する将来の意志を向上させる。献血前教育の資料は、献血意思の前に供血プロセス、潜在的な副作用、介入に関連した情報が提供される意味で、同意プロセスの一環と考えられる。こうした資料が、年齢に応じた言葉づかいやイラストなどを用いて高校生向きに作成されれば、より大きな影響を持つことになる。また、ビデオなど、その他にも青少年に親しみやすい形式で提示する場合もある。このような資料に盛り込む要素として、以下等が考えられる。 - 多くの献血者が無事に献血を行っており、副作用の多くは、起こったとしても、怪度である 旨の一般的な記述。 - 副作用リスクが高くなる可能性があるのはどのような献血者か、及びその理由に関する記述 (例:若年、初回、女性または低体重献血者はとくにリスクが高い可能性がある)。 - 初回献血者に対し、過程について知らせるための、また未知の不安を軽減するための、献血 過程に関する短い記述。 - 副作用を予防し、対処する技術を高めるための考えられる技術に関する説明、及び、これら の技術を忠実に守ることで考えられる利点の短い説明。 - 該当する場合検査結果に関する守秘義務と親・保護者の同意についての採血施設の方針を記載する記述。 必要な場合、採血施設は、有害反応の予防方策に関する教育的な取り組みに焦点を当て、副作用の軽減方法に対処し、遅延性または長期的な献血者の反応の管理に対応し、献血場所から以下の集団に献血者を渡した後の看護の継続性を検討するとよいだろう。 - 会長、移動献血のスポンサー、高校関係者 - 教育訓練、募集及び採血の職員 - 高校生とその両親 - 学校看護師 理想的には、この情報は献血日が近くなってから配布する。 - 副作用後の教育と看護。採血施設は、献血者の有害事象に対し治療をし、必要に応じて救急治療を行うプロセスを有しなければならない(BB/TS 基準 5.3.2.1)。両親・保護者または学校看護師との連絡を強化するための対策は、献血場所を離れた後、遅れて生じる副作用の管理を向上させ、また、採血施設は、以下の対策を検討するとよいだろう。 - 州法に従い、献血者の意識消失またはその他の副作用あるいは傷害が見られた場合の両親 親・保護者への連絡。 - 献血場所及び帰宅後に副作用が生じた若年献血者のケアの継続。 #### 若年献血者の同意と機密性 自主性、真実性、慈善、無危害の原則をうまくとりいれた献血のインフォームド・コンセントの実施は、一律に採用されていない。献血の同意は、単に書類上の署名ではなく、献血者、場合によっては献血者の親/保護者への教育を含めたより広義のプロセスであることを銘記しておくことが重要である。さらに、16歳及び17歳の未成年からの血液採取の同意には、ある種のジレンマと課題がある。例えば17歳の献血への同意を認めている州法は、有害反応の場合の後続的な医療処置にも未成年の同意権を認めるかについては、ほとんどの場合触れられていない。16歳の献血を認める州法は、親・保護者の許可・同意を求める場合が多く、従って完全な自由を意味するものではない。こうした州が、説明を受けた医療行為の決定を行うのに必要な意思決定権を未成年に認めているとしても、親・保護者はかれらの未成年に対し依然として法定責任を負う。 検査結果に関する献血者への通知方針は、未成年に関する州法規定に照らして慎重に検討されな ければならない。また、未成年は一般に、保護者の許可がなければ研究に参加することは禁じられる。しかし、採血施設は施設内倫理委員会が承認した研究プロトコルのもと、ある種の必要とされるまたは選択した検査を行うことができる。こうしたプロトコルは、未成年に該当する同意要件に対応している。 重ねて言うが、思春期献血者(及び親・保護者)に対し、献血プロセスや潜在的な結果(反応)に関する情報を提供することで、採血施設は必須の同意要件を満たしている。採血施設は、以下の実施を考慮すべきである。 - 年齢及び同意要件については、州法に従う。 - 思春期/未成年のインフォームド・コンセントについて具体的に記した文献に精通する。 - 同意プロセスの一環として、献血者と親・保護者の両方に情報提供する。一部の施設は、必要に応じて、情報提供のパンフレットと同意文書の両方の機能を兼ね備えた親・保護者の同意書を提供している。 - 若年かつ/または初回献血者は副作用率が高いという具体的な情報をインフォームド・コンセントのプロセスに組み込む。 - 必要に応じて、副作用及び陽性の検査結果に対する治療について、保護者に提供する情報に 関する記述を盛り込む。 #### 要約と結論 ほとんどの献血は問題なく終了するが、一方で軽度の合併症でさえ再献血の可能性を減少させる。献血後の重度の傷害は、稀ではあるがあらゆる年齢群の中で発生する。しかし思春期の献血者はそれよりも年上の大人の献血者と比べて過度に影響を受ける。実質的な献血経験の全ての局面は、合併症のリスクに何らかの影響を持つ。作業部会は、若年献血者の有害反応に関する現在の見解や実践について、総合的な検討を行った。若年献血者及び高校における移動献血がもたらす特殊な課題に対応する上で、採血施設にとって、この情報が有益となるかもしれないことを AABB は確信している。リスク・ゼロは成人においてさえ到達しがたいものであるが、未成年者の合併症率については、献血安全性に絶えず注意を集中する持続した運営上の努力に対し、継続した配慮が求められている。AABB は採血施設に対し、副作用から生じる傷害と献血者副作用率に関し、介在の有効性を継続して監視し、報告するよう勧告している。米国における国家へモビジランス・プログラムを策定しようとする AABB の取り組みは、献血後の有害事象に対する一貫した報告の枠組みとなるだけでなく、稀ではあるが医学的に重篤な献血関連の合併症を予防する取り組みの有効性を監視するためのメカニズムとなる。