試験コード:TRI PADO708
ONEX DITTERMENTAL
同意撤回書
財団法人 住友病院 院長 松澤 佑次 殿
同意撤回書
臨床試験課題名: 末梢動脈疾患患者に対する G-CSF 動員自家末梢血単核球細胞移植治療のランダム化比較試験
私は上記試験への参加に同意しましたが,同意を撤回します。
同意撤回日:年月日
本人署名:

試験責任医師または分担医師確認日:

確認者署名:

島根大学医学部から申請のあったヒト幹細胞 臨床研究実施計画に係る意見について

ヒト幹細胞臨床研究に関する 審査委員会 委員長 永井良三

島根大学医学部から申請のあった下記のヒト幹細胞臨床研究実施計画について、本審査委員会で検討を行い、その結果を別紙のとおりとりまとめたので報告いたします。

記

1. 重症低ホスファターゼ症に対する骨髄移植併用同種間葉系幹細胞移植

申請者:島根大学医学部 医学部長 紫藤 治

申請日: 平成21年11月25日

1. ヒト幹細胞臨床研究実施計画の概要

1. 口下针和心确外切力关旭时四少似安		
重症低ホスファターゼ症に対する骨髄移植併用同種 間葉系幹細胞移植		
平成21年11月25日		
実施施設:島根大学医学部 研究責任者:竹谷 健		
重症低ホスファターゼ症 -		
同種骨髓由来間葉系幹細胞		
登録期間 意見発出日から平成25年3月31日まで 10症例		
本研究は、アルカリホスファターゼ欠損により骨を作ることが障害される低ホスファターゼ症の中で、致死的な経過をとる乳幼児の患者に対して、骨髄移植後に同種骨髄間葉系幹細胞を移植するものである。ドナーは、患者の家族(2親等以内)の中でこの病気ではない人から選定する。抗がん剤(ブスルファン、シクロフォスファミド、抗胸腺グロブリン)を用いて患者の骨髄を排除しておき、移植後は、GVHD予防のため、免疫抑制剤(メソトレキセートおよびタクロリムス)を使用する。		
この疾患の重症型は、現在の段階では、呼吸障害に対する人工呼吸管理、痙攣に対する抗けいれん薬などの対症療法が行われる。これまで、同施設の経験症例を含めて3人の患者が骨髄移植、骨移植および骨芽細胞・間葉系幹細胞移植を施行され救命された。なお、2008年からアメリカで骨へ移行しやすく改良されたリコンビナントALP製剤の治験が始まっている。		
本研究では重症低ホスファターゼ症の患者を救命するために、骨髄移植後に同種間葉系幹細胞を用いた移植を		

2. ヒト幹細胞臨床研究に関する審査委員会における審議概要

1) 第1回審議

①開催日時: 平成22年1月7日(木)16:00~18:00

(第10回 ヒト幹細胞臨床研究に関する審査委員会)

②議事概要

平成21年11月25日付けで島根大学医学部から申請のあったヒト幹細胞臨床研究実施計画「重症低ホスファターゼ症に対する可及的早期に行う同種間葉系幹細胞移植」(対象疾患:重症低ホスファターゼ症)について、申請者からの提出資料を基に、指針への適合性に関する議論が行われた。

各委員からの疑義・確認事項については、事務局で整理の上申請者に確認を 依頼することとし、その結果を基に再度検討することとした。

(本審査委員会からの主な疑義・確認事項)

- 3 例と少数例の報告だけで、間葉系幹細胞移植が骨髄移植よりも有用であることの説明は難しい。症例報告と同様に、骨髄移植を行い、さらに骨髄移植細胞の一部を間葉系幹細胞の培養に用いる2 段階の治療を検討してほしい。
- 腫瘍発生のないことの実証データをもっと明瞭に説明する必要あり。文献の 内容だけでは不明瞭なので、詳細な説明が欲しい。
- エンドトキシンの汚染は、細胞培養工程を含めた加工の段階での混入が想定される。測定を行っていれば、その原因究明が可能になり、ひいてはその後の臨床研究の安全性に生かせると考えられる。従いまして、最終製品を用いてエンドトキシン測定をしておくことは必要。
- 細胞移植説明文書および骨髄採取説明文書の個人情報保護の方法について、 研究実施中の匿名化などの個人情報保護の説明を追加して欲しい。

2) 第2回審議

①開催日時: 平成22年4月2日(金)15:00~17:00

(第11回 ヒト幹細胞臨床研究に関する審査委員会)

②議事概要

申請者からの提出資料を基に、指針への適合性に関する議論が行われた。 各委員からの疑義・確認事項については、事務局で整理の上申請者に確認を 依頼することとし、その結果を基に持ち回りで審議することとした。

(本審査委員会からの主な疑義・確認事項)

- 未成年者(同胞)が最も条件に適した骨髄ドナーになるとの記載があり、 若年者が主な対象になることが想定される。表現型が正常な両親を優先してドナーに選定し、出来得る限り若年者のドナーを保護することについて検討頂きたい。
- 市販の無血清培地や開発中の無血清培地を使用して、血清含有培地とは細胞形態や分化能などで違いがあったことに関して、無血清培地と FBS 培地での

培養の結果比較について、資料を提示していただきたい。わずかな差であれば、 無血清で培養しうるのではないか。

- 3) 第3回審議
- ①委員会の開催はなし。

②議事概要

前回の審議における本審査委員会からの疑義に対し、島根大学医学部の資料が適切に提出されたことを受けて、持ち回りにて審議を行った結果、当該ヒト幹細胞臨床研究実施計画を了承し、次回以降の科学技術部会に報告することとした。

(本審査委員会からの主な疑義・確認事項)

3. ヒト幹細胞臨床研究に関する審査委員会における審議を踏まえた第1回審議時からの実施計画及び被験者への同意説明文書などの主な変更内容

(実施計画書)

- これまでこの病気に行われた細胞治療すべてが骨髄移植と間葉系幹細胞移植を併用して症状が改善していること、間葉系幹細胞が拒絶されないために骨髄移植を前もって行う必要があることから、まず骨髄移植を行い、その骨髄を用いて間葉系幹細胞を培養して移植する2段階の治療を行うこととした。
- 研究課題名を「重症低ホスファターゼ症に対する骨髄移植併用同種間葉系 幹細胞移植」に変更した。

(試験物概要書)

- 骨髄間葉系幹細胞移植における腫瘍発生の有無に関して、医療機関と産業技術総合研究所との共同研究で実施された骨髄間葉系幹細胞移植症例の予後調査を報告した。治療中、治療後に重篤な副作用もなく安全に行われていた。最近、骨・軟骨再生医療を実施した詳細な予後追跡調査の結果を記載した。
- 最終製品を用いてエンドトキシン試験や無菌試験を行うこと、再試験を含めた検証実験の成果、細胞が汚染されていると確証できた段階で移植および培養を中止することを記載した。
- ヒト骨髄由来間葉系幹細胞を市販の無血清培地と FBS 培地で骨芽細胞へ分化誘導し、ALP 活性を比較したデータから、FBS 培地を用いることとした。

(説明同意文書)

○ 未成年が骨髄提供者になる可能性がある場合、病院のコーディネーターや ソーシャルワーカーからご家族および未成年である骨髄提供者に十分な説明を したうえで、学内倫理審査委員会での審査、承認後に、提供者として適切かど うか決定し実施することとした。 ○ 細胞移植説明文書および骨髄採取説明文書の個人情報保護の方法について、「具体的には、氏名・生年月日などの個人を特定できる情報をコード化して、 患者に関する情報は情報管理者の責任の下で、書類・データーベース等に厳重 に保管する。」ことを明記した。

4. ヒト幹細胞臨床研究に関する審査委員会の検討結果

島根大学医学部からのヒト幹細胞臨床研究実施計画「重症低ホスファターゼ症に対する骨髄移植併用同種間葉系幹細胞移植」(対象疾患:重症低ホスファターゼ症)に関して、ヒト幹細胞臨床研究に関する審査委員会は、主として倫理的および安全性等にかかる観点から以上の通り論点整理を進め、それらの結果を実施計画及び患者への同意説明文書に適切に反映させた。その上で、本審査委員会は本実施計画の内容が倫理的・科学的に妥当であると判断した。

次回以降の科学技術部会に報告する。

ヒト幹細胞臨床研究実施計画申請書

平成 21 年 11 月 25 日

厚生労働大臣 殿

	所在地	島根県出雲市塩冶町 89-1
研	刀在地	
究 機 関	名称	島根大学医学部
	研究機関の長 役職名・氏名	医学部長 紫藤 治 27 27 37 37 37 37 37 37 37 37 37 37 37 37 37

下記のヒト幹細胞臨床研究について、別添のとおり実施計画書に対する意見を求めます。

記

ヒト幹細胞臨床研究の課題名	研究責任者の所属・職・氏名
重症低ホスファターゼ症に対する	島根大学医学部附属病院輸血部・講師
同種間葉系幹細胞移植	竹谷 健

ヒト 幹 細 胞 臨 床 研 究 実 施 計 画 書

臨床研究の名称	重症低ホスファターゼ症に対する骨髄	移植併用同種間葉系幹細胞移 植
研究機関		
名称	島根大学医学部	
所在地	〒693-8501 島根県出雲市塩冶町89-1	
電話番号	0853-23-2111	
FAX番号	0853-20-2215	
研究機関の長		
役職	島根大学医学部 医学部長	
氏名	紫 藤 治	印
研究責任者		
所属	島根大学医学部附属病院 輸血部	
役職	講師	
氏名	竹谷 健 ・	印
連絡先 Tel/Fax	Tel: 0853-20-2409	/Fax: 0853-20-2409
E-mail	ttaketani@med.shimane-u.ac.jp	
最終学歴	平成8年3月 島根医科大学医学部医学	学科 卒業
専攻科目	小児科学、血液学、	. 腫瘍学、分子生物学
その他の研究者	別紙1参照	
共同研究機関(該当する場合	のみ記載してください)	
名称	独立行政法人 産業技術総合研究所 再生工学研究グループ	セルエンジニアリング研究部門 組織・
所在地	〒661-0974 兵庫県尼崎市若王寺3-11-46	
電話番号	06-6494-7807	
FAX番号	06-6494-7861	
共同研究機関の長(該当する	場合のみ記載してください)	
役職	独立行政法人産業技術総合研究所理	———————————————————— 事長

ヒト幹細胞臨床研究実施計画書

氏名	野間口 有
臨床研究の目的・意義	低ホスファターゼ症とは、骨を作るのに必要なアルカリホスファターゼ(ALP)という酵素が生まれつき正常に働かないことにより、骨を作ることが障害される遺伝性の病気である。この病気の重症の患者は、全身の骨が徐々に菲薄化して骨折しやすくなり、特に呼吸筋を支える肋骨などが骨折するために呼吸不全で乳幼児期に死亡する。この病気に対して、これまで有効な治療法がなかった。しかし、近年、致死型の低ホスファターゼ症の患者に、健常人(提供者)の骨髄および骨、骨をつくる骨芽細胞や骨芽細胞のもと(起源)の細胞である間葉系幹細胞を移植することによりその提供者の細胞が患者の骨に到達(生着)して骨を作り、患者が救命されていることが報告されている。このことから、我々は2004年に同じ疾患の患者に骨髄移植、骨移植、間葉系幹細胞移植を行い、救命することができた。したがって、この臨床研究の目的として、根治療法のない重症低ホスファターゼ症の患者を救命するために、骨髄移植と間葉系幹細胞移植を行う。また、この臨床研究の意義は、本疾患に対する根治的治療法がないため、この治療が成功した場合、同じ病気で苦しんでいる子供たちへの応用が進み、生命予後の改善に大きく寄与することが期待される。
臨床研究の対象疾患	
名称	重症低ホスファターゼ症
選定理由	この疾患の重症型は、現在の段階では、細胞治療でしか救命できた患者がいないため。現在は対症療法のみで、具体的には、呼吸障害に対する人工呼吸管理、痙攣に対する抗けいれん薬などである。2008年から、アメリカで骨へ移行しやすく改良されたリコンビナントALP製剤の治験が始まっており、ある程度の効果が出ている。
被験者等の選定基準	被験者は以下の4つすべてを満たすこと 1. 生後6か月以内の発症 2. 呼吸障害を合併 3. ALP活性の低いALP遺伝子変異を有している 4. 骨髄間葉系幹細胞の骨形成能低下
臨床研究に用いるヒト幹組	田胞
種類	骨髓由来間葉系幹細胞
由来	自己。非自己·株化細胞 生体更来·死体由来
	1. 骨髄採取 まず、適切な骨髄提供者を決定する。その際、①正常な骨形成していること、②ALP活性が正常であること、③ALP遺伝子が正常である、または、異常であってもALP活性が正常に近い という条件を満たしたご家族を提供者とするため、両親(成人)あるいは同胞(未成年)が提供者になる。適切な骨髄提供者骨髄提供者からの腸骨から100-120mLの骨髄を骨髄針を用いて採取する。 2. 骨髄移植 採取された骨髄(80-100mL)を経静脈的に患者に投与する。移植する前に、患者に対して、抗がん剤(ブスルファン、シクロフォスファミド、抗胸腺グロブリン)を用いて患者の骨髄を排除しておく。移植後は、GVHD予防のため、免疫抑制剤(メソトレキセートおよびタクロリムス)を使用する。

ヒト幹細胞臨床研究実施計画書

採取、調製、 移植又は投与の方法

3. 間葉系幹細胞の採取、調整、移植

採取された骨髄(10-20mL)をヘパリンを添加したPBS(Phosphate buffered saline)を含む滅菌試験管に加える。採取には無菌での操作が必要であるため、 手術室あるいは無菌室で担当医師が行う。採取された骨髄は産業技術総合研 究所内セルプロセッシングセンターに搬送され培養操作を行う。産業技術総合 研究所における作業においては培養担当医師がその責任を負う。製造指示記 録書に培養を担当した医師名およびスタッフ名を記載する。培養は20µg/mL硫 酸ゲンタマイシンと15%牛胎児血清を含んでいる液体培地(α-MEM: GIBCO カタ ログ番号12571)に採取した骨髄を混和し、培養容器を用いて炭酸ガス培養器 (5%CO₂、37°C)内で行う。培養容器底面に間葉系幹細胞が接着し細胞が増殖 する。移植に必要な細胞数を得るために、培養細胞をプロテアーゼ(トリプシン に代わる動物由来成分不含の細胞解離剤: GIBCO recombinant Protease)を 用いて培養容器より剥がし、あらたな培養容器で継代培養(2次培養)する。培 養期間および継代回数は安全性を考え、1ヶ月以内で継代回数3回(3次培養) までとする。その後、細胞を剥離しPBSで懸濁し細胞数および生存率を測定を 行なう。細胞生存率が80%以上あり移植必要細胞数(体重あたり10⁶個/kg以上 を目標とする)が確保できていれば、細胞を新たなPBSで懸濁し滅菌試験管に |移す。移植用の間葉系幹細胞は、クーラーボックスを使用して島根大学付属病 院に搬送される。搬送された間葉系幹細胞は島根大学付属病院で、注射器に より経静脈的に全身投与される。また、移植免疫を回避し間葉系幹細胞の機能 を長期間維持するために、免疫抑制剤(タクロリムス)を投与する。呼吸状態の 悪化、骨折、体重増加不良など症状の悪化がみられた場合には、間葉系幹細 胞移植を複数回行うことがある。

4. 骨髄および移植細胞の輸送

採取・移植施設(島根大学)と調整施設(産総研)が異なるため、骨髄および移植細胞を輸送する必要がある。島根大学⇔出雲空港 30分(車)、出雲空港⇔大阪空港 50分(飛行機(客室内))、大阪空港⇔産総研 30分(車)で行い、細胞培養作業は、医師法に準拠して、島根大学の医師が培養して、産総研のスタッフがサポートする。

 調製(加工)行程
 有・無

 非自己由来材料使用
 有・無

 複数機関での実施
 有・無

 他の医療機関への授与・販売
 有・無

各培養段階において、安全性検査を実施する。培養のための骨髄採取に用 いる容器・その他の機材は全て滅菌されたものを使用し、無菌操作を心がけ る。骨髄は滅菌処理が出来ないため、滅菌チューブを二重梱包し、産業技術総 合研究所内セルプロセッシングセンターに搬送する。搬送にあたっては、保冷剤 を入れた運搬用クーラーボックスを用いる。1つのクーラーボックスで、複数の 症例の骨髄を運搬することはない。運搬中、ボックス内は、ほぼ一定の温度(10 ~30℃)に保たれていることを確認する。また、本方法にて搬送した骨髄の安全 性および有効性を確認している。培養に用いる牛胎児血清は牛海綿状脳症の 発生していない地域原産(ニュージーランドあるいはオーストラリア)で放射線照 射処理されたものを使用する。調整した液体培地は、0.22umフィルターにより フィルター滅菌を行った後、細菌・真菌検査、エンドトキシン検査を行う。骨髄は |培養開始時に細菌・真菌検査を行い、搬送時の汚染を否定する。培養過程に おいて培養操作時の汚染を否定するため、細菌・真菌検査を行う。さらに最終 |培地交換時に培養上清より、細菌・真菌検査、マイコプラズマ検査、エンドトキシ ン検査を行い、汚染の最終確認を行う。移植手術予定日にはこれらの検査結果 を踏まえて、主治医がその使用の可否を判断する。両試験で汚染が確認された 場合は、細胞培養を中止する。

ヒト 幹 細 胞 臨 床 研 究 実 施 計 画 書

安全性についての評価	現在までに産業技術総合研究所は、大学病院または国立研究機関と共同で80 症例以上の自己骨髄由来間葉系細胞培養及び移植を行っているが、すべての症例で細菌、真菌検査の最終判定は陰性であり、術後感染症等の問題は発生していない。また、骨髄の搬送方法は全ての症例で本法と同様の手法を用いており、安全性と有効性が確認されている。動物由来成分を含有する試薬は骨髄採取に用いるヘパリン(ブタ)と液体培地の牛胎児血清だけである。ヘパリンは日本薬局方のものを採用し安全性を確保する。牛胎児血清は牛海綿状脳症との関連が危惧されているが、これまで牛胎児血清を含んでいる液体培地で培養された間葉系幹細胞を投与された患者はすべて、牛海綿状脳症の発症は報告されていない。また、牛海綿状脳症の発生していない地域の血清で、放射線処理済みのものを使用することなど、可能な限りの対処を行う。細胞剥離剤は動物由来成分を含まない、トリプシン様酵素(TrypLE Select: GIBCO カタログ番号12563)を採用する。液体培地に添加する抗菌剤である硫酸ゲンタマイシンは日本薬局方のものを採用する。また移植細胞は、剥離後PBSで複数回洗浄されるため、薬剤の残留は低減する。移植細胞の搬送にはクーラーボックスを使用し一定の温度(10~30°C)に保たれ、12時間以内に島根大学付属病院手術場に搬入移植する。使用した細胞、液体培地は、その一部を後証品として冷凍保存する。
臨床研究の実施が可能であると 判断した理由	1. これまで細胞治療を行われた3例は全例骨髄移植が行われている。これは、間葉系幹細胞が拒絶されないために、免疫細胞である骨髄も間葉系幹細胞の提供者と同一とする必要があると考えられているからである。 2. 骨髄移植後の間葉系幹細胞は患者由来であることが証明されている。そのため、骨髄移植だけでは間葉系幹細胞が提供者由来に変わらないため、骨髄移植と間葉系幹細胞移植を併用する必要がある。 3. ラットの実験において、同種の間葉系幹細胞移植は免疫抑制剤を用いることで間葉系幹細胞移植は生存して、骨を形成することが明らかとなっている。4. 間葉系幹細胞移植は海外では造血幹細胞移植後の移植片対宿主病(GVHD)、クローン病、1型糖尿病、血血管障害、骨形成不全、大天性代謝疾患などの疾患に臨床応用されている。有効性は各疾患でばらつきがあるが、間葉系幹細胞を投与することの副作用はほとんどなく、安全に行われている。5. 研究分担者である産業技術総合研究所・セルエンジニアリング研究部門は、骨髄から間葉系幹細胞を培養増殖する経験を有している。約80例のさまざまな疾患を有した患者に対して、培養した間葉系幹細胞を移植している。6. 骨髄移植および間葉系幹細胞移植を行った後に、症状が再燃した症例について、その後間葉系幹細胞のみを投与して症状が改善している。そのため、骨髄移植および間葉系幹細胞移植を行った後に、呼吸状態の悪化、骨折、体重増加不良などの臨床症状の悪化がみられた場合に、間葉系幹細胞のみを再移植する。
臨床研究の実施計画	別紙参照
被験者等に関するインフォームド・	コンセント
	担当医は患者本人と親権者(法定代理人)への添付の説明文に沿って内容を説明する。ただし、今回の患者は幼少のため理解できないため、親権者(法定代理人)に対する説明となる。さらに、今回は骨髄提供者または骨髄提供者が未成年の場合、提供者の親権者(法定代理人)に対する説明も要する。

ヒト幹細胞臨床研究実施計画書

手続	説明を行った後に、内容の理解を確認した上で、添付書類の同意書を用いて、 説明医師と、説明を受けた親権者および骨髄提供者または提供者の親権者 (法定代理人)が日付を記載し、署名する。同意文書は2部複写し、1部は親権 者および骨髄提供者または提供者の親権者(法定代理人)に手渡し、1部は研 究責任者が保管する。原本はカルテに保管する。
	1)被験者用
説明事項	①臨床研究の目的、意義及び方法 ②予期される効果及び危険性とその対処方法 ③費用負担とその補償 ④他の治療法の有無及びその方法 ⑤研究への協力に同意した後であっても、自らの自由意思でいつでも同意を撤回でき、また、そのことによって不利益を受けないこと。 ⑥個人情報の保護の方法及び、研究成果が匿名化の上公表されること。 ⑦知的財産権に関して ⑧問い合わせ・苦情の受付先
	2)骨髓提供者用
	①対象疾患に対する説明 ②臨床研究の目的 ③骨髄採取方法 ④予期される効果 ⑤危険性とその対処方法 ⑥他の治療法の有無及びその方法 ⑦個人情報の保護の方法及び、研究成果が匿名化の上公表されること。 ⑧知的財産権に関して ⑨問い合わせ・苦情の受付先
単独でインフォームド・コンセントを	与えることが困難な者を被験者等とする臨床研究の場合
研究が必要不可欠である	
理由	本臨床研究の対象疾患は致死的な重症低ホスファターゼ症であり、先天性疾患であることから被験者は全て乳幼児である。
代諾者の選定方針	被験者の親権者または養育責任者
被験者等に対して重大な事態が	1. 抗がん剤の副作用は、食欲低下、嘔気、嘔吐、下痢などの消化器症状、脱毛、骨髄抑制(貧血、血小板減少、白血球減少)が挙げられる。消化器症状に対して、高カロリー輸液、制吐剤、骨髄抑制に対して、輸血、感染予防(無菌室、抗菌薬投与など)で対応する。 2. 骨髄移植後の副作用として、感染症とGVHDなどが挙げられる。感染症に対して、抗菌薬投与などで対応する。GVHDに対しては、免疫抑制剤を予防的に
生じた場合の対処方法	投与(メソトレキセートおよびタクロリムス)して、もしGVHDが発症した場合、ステロイドなどの他の免疫抑制剤の投与を検討する。 2. 間葉系幹細胞を投与することで起こる副作用は、アレルギー反応が挙げられる。それに対しては、抗ヒスタミン剤およびステロイドを前投与して、予防する。 3. 今回使用する免疫抑制剤であるタクロリムス(プログラフ®)の副作用は、腎障害、高血糖、中枢神経障害(頭痛、けいれんなど)、心不全、高血圧、低マグネシウム血症、高カリウム血症、高コレステロール血症、腹部膨満、下痢、多毛、手指の振戦、感染症などが挙げられる。これらの副作用は、血中濃度に比例するものが多いことから、血中濃度測定を定期的に行い、至適濃度内に管理する。また、症状を観察し、定期的な検査を行うことで、もし副作用が生じた場合、早期に副作用を発見し、対処する。感染症に関しては、抗菌薬内服などで予防に努める。
臨床研究終了後の追跡調査の 方法	臨床研究が終了後も、救命された場合、骨の発達を観察する必要があるため、 成人になるまで、経過観察する。
臨床研究に伴う補償	
補償の有無	有

ヒト幹細胞臨床研究実施計画書

	補償が有る場合、その内容	
個人	情報保護の方法	· · · · · · · · · · · · · · · · · · ·
	連結可能匿名化の方法	研究責任者の責任のもと、氏名、生年月日、住所などの個人を特定できる情報を取り除き、代わりに新たな登録番号をつけ、個人を特定できなくする。具体的には、氏名・生年月日などの個人を特定できる情報をコード化して、患者に関する情報は情報管理者の責任の下で、書類・データーベース等に厳重に保管する。
	その他	研究結果の公表に際しては、個人情報保護法に則り、個人情報の保護に十分 配慮する。公表されうる個人に関する情報としては年齢、疾患名、性別のみで ある。
その)他必要な事項	①当該研究に係る研究資金の調達方法
(細則を確認してください)	骨髄穿刺及び細胞培養にかかる費用は、すべて島根大学と産業技術総合研究所 セルエンジニアリング研究部門 組織・再生工学研究グループが負担をする。骨髄穿刺等の島根大学でかかる費用は、文部科学省・委託研究「平成20年度再生医療実現化プロジェクト」の1つである「重度先天性骨代謝疾患に対する遺伝子改変間葉系幹細胞移植治療法の開発」の研究費より、細胞培養に掛かる費用は産業技術総合研究所 セルエンジニアリング研究部門 組織・再生工学研究グループの運営交付金より資金を調達する。	
		②既に実施されているヒト幹細胞臨床研究と比較して新規性が認められる事項
		これまで、我々が経験した患者さんを含めて、3人の患者さんが骨髄移植、骨移植および骨芽細胞・間葉系幹細胞移植を施行して救命された。本疾患に対してこれらの治療を行った報告は3例しかないが、これらの治療以外で救命された例はない。現在のところ、他の方法では治療では期待できない。そこで、本計画では重症低ホスファターゼ症の患者を救命するために、骨髄移植と間葉系幹細胞を用いた移植治療研究を行う。以上より、骨髄移植と間葉系幹細胞のみを移植することに新規性が認められる。

備考1 各用紙の大きさは、日本工業規格A4とすること。

備考2 本様式中に書ききれない場合は、適宜別紙を使用し、本様式に「別紙〇参照」と記載すること。

添付書類(添付した書類にチェックを入れること)

	研究者の略歴及び研究業績	
	研究機関の基準に合致した研究機関の施設の状況	
	臨床研究に用いるヒト幹細胞の品質等に関する研究成果	
	同様のヒト幹細胞臨床研究に関する内外の研究状況	
	臨床研究の概要をできる限り平易な用語を用いて記載した要旨	
	インフォームド・コンセントにおける説明文書及び同意文書様式	
-	その他(資料内容:ポンチ絵)
	その他(資料内容:低ホスファターゼ症の概略	.)

人間を対象とする医学の研究及び臨床応用申請書

平成22年4月9日 (提出)

島根大学医学部長 殿

申請者(研究責任者)

所属・職名 輸血部 講師___

名 竹谷 健 _ 印

(英文) 所属・職名 <u>Division of Blood Transfusion</u>.

氏

Associate professor

氏 名 Takeshi Taketani

所属講座等教授

氏 名 山口 清次 印

1 課題名

重症低ホスファターゼ症に対する骨髄移植併用同種間葉系幹細胞移植

Allogeneic Bone Marrow and Mesenchymal Stem Cell Transplantation for patients with severe Hypophosphatasia

2. 研究等分担者

所 属 ・ 職 名	氏	名
島根大学医学部小児科・教授	山口	清次
同・准教授	福田	誠司
同 · 講師	<u> 金井</u>	理恵
司・講師	鬼形	和道
同・助教	小林。	弘典
同・助教	四本	由郁
産業技術総合研究所		
健康工学研究部門・産総研招聘研究員	大串	始
健康工学研究部門・主任研究員	服部	耕治

健康工学研究部門・研究員 健康工学研究部門・研究員 健康工学研究部門・研究員
 大西
 弘惠

 勝部
 好裕

 町田
 浩子

3. 研究等を行う具体的な場所

- (1) 島根大学医学部附属病院3階西病棟
- (2) 産業技術総合研究所 関西センター 尼崎事業所 〒661-0974 尼崎市若王寺3·11-46

4. 研究等の概要

意差

重症低ホスファターゼ症の患者さんを救命すること。

目的

低ホスファターゼ症とは、生まれつき骨を作るのに必要なアルカリホスファターゼ(ALP)という酵素が生まれつき正常に働かないことにより、骨を作ることが障害される遺伝性の病気である。この病気の重症の患者さんは、全身の骨が徐々に菲薄化して骨折しやすくなり、特に呼吸筋を支える肋骨などが骨折するために呼吸不全で乳幼児期に死亡する。この病気に対しては、これまで有効な治療法がなかった。しかし、近年、致死型の低ホスファターゼ症の患者さん2例に対して、健常人(提供者)の骨髄および骨、骨をつくる骨芽細胞や骨芽細胞のもと(起源)の細胞である間葉系幹細胞を移植することによりその提供者の細胞が患者さんの骨に到達(生着)して骨を作り、患者さんが救命されていることが報告されている。このことから、我々は2004年に同じ疾患の患者さんに骨髄移植、骨移植、間葉系幹細胞移植を行い、救命することができた。

現在、申請者らは、島根大学および産業技術総合研究所の共同研究で文部科学省・委託研究「平成20年度再生医療実現化プロジェクト」の1つである「重度先天性骨代謝疾患に対する遺伝子改変間葉系幹細胞移植治療法の開発」に参加して研究を進めている。具体的には、患者さん本人由来の間葉系幹細胞に正常のALP遺伝子を導入し、導入遺伝子の安全性を確認した上で患者に戻すという遺伝子細胞治療を開発し、同疾患の根治治療を行う予定である。しかし、現時点で遺伝子細胞治療を臨床応用できる段階ではない。したがって、提供者(健常人)からの間葉系幹細胞(他家細胞)を患者さんに移植する細胞治療することによって、重症低ホスファターゼ症の患者さんを救命することが期待されるため、今回、骨髄移植併用同種間葉系幹細胞移植を臨床研究として行う。

方法

患者さんが本学附属病院小児科を受診して、そのご家族が本治療に同意された後、患者 さんに間葉系幹細胞を提供する最適な提供者をご家族の中から決定する。

提供者の骨髄を採取して、患者さんに骨髄移植を行う。また、採取された骨髄の一部を用いて産業技術総合研究所で間葉系幹細胞を培養・増殖して、患者さんに、適切な間葉系幹細胞を経静脈的に投与する。骨髄移植の前には、抗がん剤を投与して、骨髄および間葉系幹細胞移植の後に免疫抑制剤を投与して、移植された骨髄および間葉系幹細胞が拒絶されないようにする。その後、症状および骨の状態などをみて、間葉系幹細胞移植を繰り返し行う。

予定症例数

5例

国内外の研究状況、学会等の見解

これまで、我々が経験した患者さんを含めて、3人の患者さんが骨髄移植、骨移植および骨芽細胞・間葉系幹細胞移植を施行して救命された。本疾患に対してこれらの治療を行った報告は3例しかないが、これらの治療以外で救命された例はない。そのため、本疾患へのこれらの治療への応用とその効果が期待されている。

実施期間

承認日から平成25年3月31日まで

5 研究等における倫理的配慮について

(1) 研究等の対象となる者の尊厳と人権の擁護

以下の内容を口頭で詳しく説明すると同時に、担当医は以下の内容を遵守する。1)病名、推測される予後に関する説明および本治療の内容、2)治療により期待される効果、有害事象、合併症、後遺症とその対処療法について、3)費用負担と補償(間葉系幹細胞培養増殖にかかる費用は研究費でまかなわれること、健康被害が生じた場合の補償は一般診療での対処に準ずることなど、一般診療と同様であることの説明)、4)代替治療法(現在行っている一般的治療法や標準治療法の内容、効果、毒性など、代替治療を選択した場合の利益と不利益)、5)同意拒否と同意撤回(臨床試験参加に先立っての同意拒否が自由であること、いったん同意した後の同意の撤回も自由であり、それにより不当な診療上の不利益を受けないこと)、6)人権保護(氏名や個人情報は守秘されるための最大限の努力が払われること)、7)質問の自由(担当医の連絡先を文書で知らせ、治療内容について自由に質問できること)。

(2) 研究等の対象となる者に理解を求め同意を得る方法

担当医は患者本人と親権者(法定代理人)への添付の説明文に沿って内容を説明する。

ただし、今回の患者は幼少のため理解できないため、親権者 (法定代理人) に対する説明となる。さらに、今回は骨髄提供者または提供者の親権者(法定代理人) に対する説明も要する。

説明を行った後に、内容の理解を確認した上で、添付書類の同意書を用いて、説明医師と、説明を受けた親権者および骨髄提供者または提供者の親権者(法定代理人)が日付を記載し、署名する。同意文書は2部複写し、1部は親権者および骨髄提供者または提供者の親権者(法定代理人)に手渡し、1部は研究責任者が保管する。原本はカルテに保管する。

(3)研究等の対象となる者の安全性の確保,不測の事態が発生した場合の対処法及び医学上の貢献度の予測

1) 安全性の確保

安全かつ適切に治療を行うため、薬剤投与は入院治療で行い、外来でも定期的に 診察および検査を行う。

2) 不測の事態が発生した場合の対処法

副作用が生じた場合、治療を一時中断または投与量を減らす。また、それぞれの症状に対しての対処療法を行う。重篤な副作用の場合は、治療そのものを中止する。

3) 医学上の貢献度

本疾患は放置すると致死的な経過をとるため、救命するためには上記の治療を試みる価値があると思われる。骨髄移植および間葉系幹細胞移植を行うにあたり、免疫抑制剤による副作用、拒絶反応などを合併する可能性が考えられる。これらに対して定期的検査、および適切な治療を行い、細心の注意を払って全身管理を行う。現在、本疾患に対する根治的治療法はないため、これらの治療が成功した場合、同じ病気で苦しんでいる病気の子供たちへの応用が進み、生命予後の改善に大きく寄与することが予測される。

研究計画書

平成22年4月9日 (提出)

1. 課題名

重症低ホスファターゼ症に対する骨髄移植併用同種間葉系幹細胞移植

2. 研究の背景

低ホスファターゼ症とは、生まれつき骨を作るのに必要なアルカリホスファターゼ(ALP)という酵素が正常に働かないことにより、骨を作ることが障害される病気である1-4。この病気の臨床像は、致死的なタイプから歯が抜けやすいだけのタイプまでさまざまである1-4。致死型の患者は、乳幼児期に発症して、全身の骨が徐々に菲薄化して骨折しやすくなり、特に呼吸筋を支える肋骨などが骨折するために呼吸不全で死亡することが多い1-4。この病気に対する現在の治療は、対処療法しか存在せず、有効な根治療法はない1-4。しかし、近年、致死的な低ホスファターゼ症の患者に、健常人(提供者)の骨髄および骨、骨をつくる骨芽細胞や骨芽細胞のもと(起源)の細胞である間葉系幹細胞を移植することによりその提供者の細胞が患者さんの骨に到達(生着)して骨を作り、患者が救命されていることが報告されている5-6。このことから、我々は2004年に同じ疾患の患者さんに骨髄移植、骨移植、間葉系幹細胞移植を行い、患者さんを救命することができた7。

現在、申請者らは、島根大学および産業技術総合研究所の共同研究で文部科学省・委託研究「平成20年度再生医療実現化プロジェクト」の1つである「重度先天性骨代謝疾患に対する遺伝子改変間業系幹細胞移植治療法の開発」(以下、再生医療プロジェクト)に参加して研究を進めている。具体的には、患者本人由来の間葉系幹細胞あるいは間葉系幹細胞由来iPS細胞に正常のALP遺伝子を導入し、導入遺伝子の安全性を確認した上で患者に戻すという遺伝子細胞治療を開発し、根治療法のない同疾患の根治治療を行う予定である。しかし、現時点で遺伝子細胞治療を臨床応用できる段階ではない。したがって、健常人(提供者)からの骨髄および間葉系幹細胞を患者さんに移植することによって、重症低ホスファターゼ症の患者さんを救命することが期待できるために、骨髄移植および間葉系幹細胞移植を臨床研究として開発する。

今回、骨髄移植および間葉系幹細胞を移植する理由は以下のとおりである。

- ① これまで細胞治療を行われた3例は全例骨髄移植が行われている。これは、間葉系幹細胞が拒絶されないために、免疫細胞である骨髄も間葉系幹細胞の提供者と同一とする必要があると考えられているからである。
- ② 骨髄移植後の間葉系幹細胞は患者由来であることが証明されている^{8,9}。そのため、骨 髄移植だけでは間葉系幹細胞が提供者由来に変わらないため、骨髄移植と間葉系幹細 胞移植を併用する必要がある。
- ③ ラットの実験において、同種の間葉系幹細胞移植は免疫抑制剤を用いることで間葉系

幹細胞移植は生存して、骨を形成することが明らかとなっている10。

- ④ 間葉系幹細胞移植は海外では造血幹細胞移植後の移植片対宿主病(GVHD)、クローン病、1型糖尿病、心血管障害、骨形成不全、先天性代謝疾患などの疾患に臨床応用されている¹¹⁻¹⁴。有効性は各疾患でばらつきがあるが、間葉系幹細胞を投与することの副作用はほとんどなく、安全に行われている¹¹⁻¹⁴。
- ⑤ 研究分担者である産業技術総合研究所・健康工学研究部門は、骨髄から間葉系幹細胞を培養増殖する経験を有している。約80例のさまざまな疾患を有した患者に対して、 培養した間葉系幹細胞を移植している。
- ⑥ 骨髄移植は治療の方法や安全性が明らかとなっている。

3. 研究目的

根治療法のない致死的な重症低ホスファターゼ症の患者に提供者由来の間葉系幹細胞移植を行い、患者を救命すること。

4. 研究方法

1) 重症低ホスファターゼ症の診断

低ホスファターゼ症は、四肢の短縮や変形、易骨折性、体重増加不良、低身長などで発見されて、血清ALPが低いことで診断される1.4。致死的なタイプは、周産期あるいは乳児期のいずれかに発症する1.4。しかし、この時期に発症する患者の中には、成長とともに徐々に症状が改善するタイプが存在する2.4。血清ALPの値は重症な患者ほど低いが、その閾値を設定することはできない1。現時点で重症度を決定する因子は、呼吸障害の有無およびALP遺伝子の変異部位である2.3,15-18。呼吸障害は出生時から存在することもあるが、徐々に顕著化することもあるため、診断時に有用なのはALP遺伝子変異部位の同定である。そのため、今回の臨床研究は致死的な患者に限定されるため、致死的な患者を診断する必要がある。そのため、乳幼児期発症の患者において、ALP遺伝子の全領域の遺伝子解析を行い、重症なタイプのALP遺伝子変異を有する患者を同定する。また、骨髄穿刺により骨髄約2mlを採取して、産総研・健康工学研究部門での培養や分化誘導による間葉系幹細胞の増殖能や骨形成能を調べて、患者の間葉系幹細胞の機能評価を行う。

2) 対象

この臨床研究の対象者は、重症低ホスファターゼ症の患者である。これまでの報告および疫学調査から、対象患者の条件として、以下の4項目を満たすものとする1.4,15.18。

- ① 生後6か月以内に発症する
- ② 呼吸障害を合併している
- ③ ALP活性の低いALP遺伝子変異を有している
- ④ 間葉系幹細胞の骨形成能が低下している

3) 骨髄提供者の選定

本臨床研究は健常人の骨髄および間葉系幹細胞を用いる。間葉系幹細胞は骨髄に存在するため、健常人の骨髄を採取する必要がある。患者の家族(2親等以内)の中でこの病気ではない人から、最も適切な間葉系幹細胞をもつ人を症状および血液検査(ALP、肝機能、腎機能など)、ALP遺伝子検査から選定する。また、骨髄移植を併用するため、患者および骨髄提供者のHLA検査を行い、最適な提供者を決定する。

骨髄提供者の選定基準は、以下のとおりである。

- ① 患者のご家族(血縁関係のある2親等以内)である
- ② 症状および骨レントゲン、骨密度などから、骨形成が正常に行われている
- ③ ALP活性が正常である
- ④ ALP遺伝子が正常である、または、ALP遺伝子異常があってもALP活性が正常である
- ⑤ HLAが一致している、または、一致していなくても骨髄の生着や重篤な移植 後合併症が起きる可能性が低い
- ⑥ 感染症マイナス(HIV(ヒト免疫不全ウイルス)、HBV(B型肝炎)、HCV(C型肝炎)、 HTLV1(成人T細胞白血病ウイルス)検査結果陰性)である
- ⑦ その他、骨髄提供者として不適切な条件を有していない

骨髄提供者の優先順位は、両親がALP遺伝子異常を認めてもその表現型が正常であり、患者とのHLA不一致の程度が骨髄移植に耐えうる場合、両親のどちらかをドナーとする。しかし、両親のどちらも、ALP遺伝子変異を有し、かつ表現型が正常でない場合(症状がある場合)、HLA不一致の程度が高く骨髄移植の合併症であるGVHDや拒絶反応などの重篤な有害事象を発生する可能性が高い場合にのみ、未成年である同胞をドナーとする。この際は、未成年の人権保護に十分に留意して、親権者に説明する。なお、未成年者からの骨髄採取について、両親に説明して同意を得るだけではなく、可能な限り未成年者本人にも十分に説明する。この場合、15歳以上の場合には、本人の承諾を得て行う。本人の承諾のない場合には、骨髄提供者としない。15歳未満の場合には、年齢に応じて本人に理解できるように説明を試みて、可能な限り本人の承諾を得ることに努力する。さらに、未成年者が骨髄提供者になる場合、島根大学医の倫理委員会で骨髄提供者としての妥当性を審査して、また、ソーシャルワーカーあるいはコーディネーターから家族および未成年である提供者に説明を行った後に、未成年が提供者として適切かどうか決定する。

4) 骨髄提供者からの骨髄採取

最も適している間葉系幹細胞を有している健常人に骨髄採取の説明を行い、同意を得られた後、骨髄を採取する。骨髄提供者が未成年の場合、代諾者に説明して、同意を得る。骨髄採取は、無菌での操作が必要であるため、手術室あるいは無菌室で行う。骨髄採取量は100~120mlである。採取中の麻酔は骨髄提供者、小児科医師および麻酔科医師により決定される。採取方法は、骨髄提供者の腸骨から、1回の穿刺で約10mlの骨髄を採取する。

5) 骨髓移植

① 移植時期

重症低ホスファターゼ症は生後間もなくより呼吸障害が出現して1年以内に亡くなるため、診断が確定したら可及的速やかに移植を行う。

② 骨髄移植の前処置

骨髄提供者の骨髄を生着させる必要があるため、提供者の骨髄を移植する前に患者さんの骨髄を抗がん剤により排除する必要がある。抗がん剤として、ブスルファン $(0.9-1 mg/kg/dose \times 4 p day)$ 、シクロフォスファミド (50 mg/kg/dose)、4日間)、抗胸腺グロブリン(1.25 mg/kg/dose、4日間)を用いる。なお、患者の状態により、投与量および投与薬剤を変更することもある。

③ GVHD予防

骨髄生着により発症するGVHD予防に対して、メソトレキセート(10-15mg/kg/dose、4日間)およびタクロリムスを用いる。タクロリムスの投与量は、0.02~0.04 mg/kg/dayを経静脈的に投与するが、後述している通り、間葉系幹細胞の拒絶のためにもタクロリムスを使用するため、投与量や投与期間などは、間葉系幹細胞移植の状態を考慮して、患者ごとに調節する必要がある。状態が落ち着いてきた場合、タクロリムスは経口投与に変更する。

④ その他

骨髄移植を行うに当たり、抗がん剤の副作用対策(制吐剤など)や感染対策(無菌室、抗菌薬予防内服など)、輸血、栄養管理などは通常の骨髄移植に準じて行う。

5) 間葉系幹細胞の培養増殖

採取された骨髄は産業技術総合研究所・健康工学研究部門に搬送され、牛胎児血清を含んでいる液体培地を用いてフラスコ内で培養すると、約14日間で間葉系幹細胞が増殖する。この培養細胞の一部を後述6)のために保存する。治療に必要十分な細胞数を得るため、増殖した細胞を分けて、複数の別のフラスコ内で約7日間代培養し、治療に使用する。この増殖した細胞の一部も同様に保存する。牛の血清を使用することで狂牛病との関連が危惧されているが、牛海綿状脳症の発生していない地域(ニュージーランドあるいはオーストラリア)の牛の血清を使用すること、放射線照射などによる最大限の滅菌処理を行うことなどで可能な限りの対処を行う。

なお、間葉系幹細胞の品質等の確認、および間葉系幹細胞の調製機関として適正に関しては、調製機関である産業技術総合研究所の倫理委員会で審査して頂くこととする。

さらに、島根大学での骨髄の採取、産業技術総合研究所・健康工学研究部門への骨髄の搬送および同施設での間葉系幹細胞の培養増殖、調整された間葉系幹細胞の島根大学への搬送は、本研究の島根大学の研究分担者が行うこととする。

6) 間葉系幹細胞の保存および基礎的研究

培養された間葉系幹細胞の一部は安全性の確認のため、凍結して10年間保存する。 さらに、余剰の細胞は基礎的研究に使用する。

7) 間葉系幹細胞移植

① 移植時期

重症低ホスファターゼ症は生後間もなくより呼吸障害が出現して1年以内 に亡くなるため、診断が確定したら可及的速やかに移植を行う。

② 患者への間葉系幹細胞の投与

産総研で培養増殖された間葉系幹細胞を経静脈的に投与する。間葉系幹細胞 の移植細胞数は患者の体重当たり10⁶個/kg以上を目標とする。

③ 免疫抑制剤の投与

同種移植を行う場合、提供者と患者の主要組織抗原(HLA)を合わせる必要がある。HLAが一致していない場合、拒絶反応が誘発される。間葉系幹細胞は、HLAクラス1の発現がないため、HLAが一致していなくても拒絶反応が起きにくい¹¹,¹¹。しかし、長期に生存し、MSCの機能を維持するためには、免疫抑制剤が必要となる¹0,²0,²¹。上述したように、免疫抑制剤を長期に使用しなくても、提供者の細胞が骨を作っていることが報告されていることら,7、また、免疫抑制剤を長期使用することによる副作用が懸念されることから、今回は、免疫抑制剤を造血幹細胞移植および臓器移植に準じて、6か月間期間使用することとする。免疫抑制剤の中で、タクロリムスは、間葉系幹細胞の骨への分化を促進し、ALP活性を増強させることが報告されている²0,²¹。また、タクロリムスは、乳児において造血幹細胞移植や臓器移植、ネフローゼ症候群などの免疫疾患に、数多く使用されており、その安全性と有効性が示されている²2-² 6、以上より、今回の移植では、タクロリムスを使用する。

タクロリムスの投与量は、0.02~0.04 mg/kg/dayを経静脈的に投与する。 治療濃度域と安全域が狭いため、血中濃度を測定して、trough値を造血幹細胞移植および臓器移植を参考にして、以下のように設定する。移植後180日より、漸減中止とする。しかし、前述したGVHD予防に対してもタクロリムスを使用するため、GVHDの程度などで、投与量や血中濃度などを患者ごとに調節する必要がある。

なお、タクロリムス中止後、間葉系幹細胞の生存率および骨形成能も低下 して、症状および検査値が悪化する場合は、免疫用製剤の投与の延長を検討 する。

投与日程	タクロリムスのトラフ値 (ng/mL)
移植前日~移植後1週間	12~15
移植後1週間~30日	10~12
移植後30日~180日	5~10

8) 移植後の評価 (移植後から6歳まで)

・臨床症状: バイタルサインおよび呼吸状態(毎日)

身体計測、成長・発達(月1回)

検査: 週1回:ALP、カルシウム、リン、マグネシウム、

一般尿(沈査も含む)、尿中カルシウム/クレアチニン

月1回:尿中ホスホエタノールアミン、ピリドキサールリン酸、

NAPスコア、副甲状腺ホルモン、ビタミンD、

骨型ALP、オステオカルシン、尿中NTX、

尿中デオキシピリジノリン

適宜: 末梢血、生化学、免疫グロブリン、

タクロリムスの血中濃度

成長ホルモン、甲状腺ホルモン、骨髄穿刺、骨生検

・画像: 月1回:全身骨レントゲン、胸部レントゲン、骨塩定量

・その他: 整形外科、歯科、眼科、脳外科、リハビリテーション

*なお、臨床研究が終了後、救命された場合、骨の発達などを観察する必要があるため、また、予期せぬ症状なども確認する必要があるため、6歳から18歳まで、年1回、以下の評価を行う。

・臨床症状: 身体計測、成長・発達(月1回)

・血液検査:末梢血、生化学、免疫グロブリン、ALP、カルシウム、リン、 マグネシウム、ピリドキサールリン酸、NAPスコア、副甲状腺 ホルモン、ビタミンD、骨型ALP、オステオカルシン、成長ホ ルモン、甲状腺ホルモン

・尿検査: 一般尿(沈査も含む)、尿中カルシウム/クレアチニン、尿中ホ スホエタノールアミン、尿中NTX、尿中デオキシピリジノリン

・画像: 全身骨レントゲン、胸部レントゲン、骨塩定量

・その他: 整形外科、歯科、リハビリテーション

9) 副作用とその対策

骨髄および間葉系幹細胞を投与することで起こる副作用は、アレルギー反応 が挙げられる。それに対しては、抗ヒスタミン剤およびステロイドを前投与 して、予防する。

抗がん剤の副作用は、食欲低下、嘔気、嘔吐、下痢などの消化器症状、脱毛、骨髄抑制(貧血、血小板減少、白血球減少)が挙げられる。消化器症状に対して、高カロリー輸液、制吐剤、骨髄抑制に対して、輸血、感染予防(無菌室、抗菌薬投与など)で対応する。

骨髄移植後の副作用として、感染症とGVHDなどが挙げられる。感染症に対して、抗菌薬投与などで対応する。GVHDに対しては、免疫抑制剤を予防的に投与(メソトレキセートおよびタクロリムス)して、もしGVHDが発症した場合、ステロイドなどの他の免疫抑制剤の投与を検討する。

特に、タクロリムスの副作用は、腎障害、高血糖、中枢神経障害(頭痛、けいれんなど)、心不全、高血圧、低マグネシウム血症、高カリウム血症、高コレステロール血症、腹部膨満、下痢、多毛、手指の振戦、感染症などが挙げられる。これらの副作用は、血中濃度に比例するものが多いことから、血中濃度測定を定期的に行い、至適濃度内に管理する。また、症状を観察し、定期的な検査を行うことで、もし副作用が生じた場合、早期に副作用を発見し、対処する。感染症に関しては、抗菌薬内服などで予防に努める。

提供者の間葉系幹細胞が生着したかどうか判定するために、定期的に骨髄検査を行う。この疾患は骨が脆弱であるため、骨髄検査に伴う骨折の危険性がある。しかし、骨髄検査に精通した医師が行うこと、同じ疾患に骨髄検査を数回行ったが骨折などの有害事象が発生していないので、その可能性は低いと思われる。また、骨折が生じにくく、骨髄検査を行いやすい腸骨から骨髄検査を行う。もし、骨折が生じた場合、整形外科の医師とともに、その治療を行う。

10) 再移植の基準と方法

骨髄移植および間葉系幹細胞移植を行った後に、症状が再燃した症例について、その後間葉系幹細胞のみを投与して症状が改善している5.7。そのため、骨髄移植および間葉系幹細胞移植を行った後に、呼吸状態の悪化、骨折、体重増加不良などの臨床症状の悪化がみられた場合に、間葉系幹細胞のみを再移植する。その時は、再度、説明した後、同意を取ってから移植を行う。移植の方法は、骨髄移植の骨髄提供者から再度骨髄を採取して、間葉系幹細胞の培養増殖を行った後、間葉系幹細胞のみを再移植する。投与方法及び免疫抑制剤の投与は、7)②および③に準じて行う。

11) 重大な事態が生じた場合の対処方法

骨髄移植および間葉系幹細胞移植を行うことにより重大な事態(重篤な有害事象、治療効果が得られない(致死)場合)、研究責任者は研究機関の長に対して、速やかに報告する。その場合、研究機関の長は、原因の分析を含む対処方針につき、速やかに倫理委員会などの意見を聴き、当該臨床研究の中止その他の暫定的な措置を講じるよう指示する。なお、研究責任者または研究機関の長は、必要に応じ、研究機関の長または倫理委員会の指示を受ける前に、当該臨床研究の中止その他の暫定的な措置を講じる必要がある。

8) 治療期間

承認日から平成25年3月31日

9) 治療場所

- (1) 島根大学医学部附属病院3階西病棟
- (2) 産業技術総合研究所 関西センター 尼崎事業所

10) 予定人数

5名

5. 倫理的配慮

ヘルシンキ宣言の趣旨に沿って治療を行う。患者本人が幼少のため親権者または法定 代理人のみの説明となる。また、骨髄採取においては骨髄提供者または骨髄提供者が幼少 の場合はその親権者(法定代理人)に説明する。臨床研究を行うかどうかの決定は親権者 または法定代理人の自由意思に基づき、いずれの決定を行っても、不利益を被ることはな く、また、親権者(法定代理人)の意思により、いつでも本治療を中断することが可能で ある。また、本治療の対象となられた方の名前、住所などの個人情報を特定できるデータ は外部へ公表することは一切ない。

6. 治療成果の公表

本治療で得られた結果やデータは学会発表や学術論文として公表する。本研究の詳細な結果は公表されるが、その場合個人に関する情報としては、年齢・性別・疾患名のみであるので、個人情報に関して保護される。

7. 個人情報の保護

上述した通り、本治療で得られた結果やデータは学会や学術論文として公表する可能性があるが、個人の名前などは一切伏せられた状態で取り扱われる。従って、個人情報に関して保護される。また、資料の保存の際の匿名化も行う。具体的には、氏名・生年月日などの個人を特定できる情報をコード化して、患者に関する情報は情報管理者の責任の下で、書類・データーベース等に厳重に保管する。

8. 知的財産権

本研究の結果として特許権などが生じる可能性があるが、その権利は、患者とその家族、骨髄提供者に帰属しない。

9. 費用負担

臨床研究にかかわる費用は研究費より支払う。しかし、家族負担が適切と考えられる ものについては負担して頂く。

10. 予想される結果とこの研究の発展性

本疾患は放置すると致死的な経過をとるため、救命するためには上記の治療を試みる価値があると思われる。骨髄移植および間葉系幹細胞移植を行うにあたり、免疫抑制剤による副作用、拒絶反応などを合併する可能性が考えられる。これらに対して定期的検査、および適切な治療を行い、細心の注意を払って全身管理を行う。

現在、本疾患に対する根治的治療法はないため、これらの治療が成功した場合、同じ 病気で苦しんでいる病気の子供たちへの応用が進み、生命予後の改善に大きく寄与する ことが予測される。

11. 研究体制

所属	氏 名	役割分担
島根大学医学部附属病院輸血部・講師	竹谷 健	研究総括
		骨髄採取
		細胞培養
島根大学医学部小児科学講座・教授	山口 清次	研究総括
		情報管理者
島根大学医学部小児科学講座・准教授	福田 誠司	遺伝子検査
島根大学医学部小児科学講座・講師	金井 理恵	移植医療
		細胞培養
		間葉系幹細胞培養
島根大学医学部小児科学講座・講師	鬼形 和道	遺伝カウンセリング
		骨代謝医療
島根大学医学部小児科学講座・助教	小林、弘典	骨代謝医療
島根大学医学部小児科学講座・助教	四本 由郁	新生児医療
産業技術総合研究所・産総研招聘研究員	大串 始	CPC運営細胞培養
産業技術総合研究所・主任研究員	服部 耕治	細胞培養
産業技術総合研究所・研究員	大西 弘惠	安全性試験
産業技術総合研究所・研究員	勝部 好裕	細胞培養
産業技術総合研究所・研究員	町田 浩子	細胞培養

猫文

- 1. Whyte MP: Hypophosphatasia. In:Scriver CR, Beaudet AL, Sly WS, Valle D, Childs B, Kinzler KW, Vogelstein B (eds); The Metabolic and Molecular Bases of Inherited Disease, 8th ed, McGraw-Hill, 2001; Vol 4:5313-5329
- 2. Mornet E, Nunes ME: Hypophosphatasia. GeneReviews
- 3. Mornet E: Hypophosphatasia. Best Pract Res Clin Rheumatol. 2008;22:113-127
- 4. 大薗恵一: 低ホスファターゼ症の治療. Clinical Calcium 2007;17:1214-1219
- 5. Whyte MP, et al: Marrow cell transplantation for infantile hypophosphatasia.
- J Bone Miner Res. 2003;18:624-636
- 6. Cahill RA, et al: Infantile hypophosphatasia: transplantation therapy trial using bone fragments and cultured osteoblasts. J Clin Endocrinol Metab. 2007; 92:2923-2930
- 7. Tadokoro M, et al: New bone formation by allogeneic mesenchymal stem cell transplantation in a patient with perinatal hypophosphatasia. J Pediatr. 2009;1 54:924-930
- 8. García-Castro J, et al: Mesenchymal stem cells are of recipient origin in pediatric transplantations using umbilical cord blood, peripheral blood, or bone marrow. J Pediatr Hematol Oncol. 2007;29:388-392.
- 9. Bartsch K, et al: Mesenchymal stem cells remain host-derived independent of the source of the stem-cell graft and conditioning regimen used. Transplantation. 2009;87:217-221.
- 10. Kotobuki N, et al: In vivo survival and osteogenic differentiation of allogene ic rat bone marrow mesenchymal stem cells (MSCs). Cell Transplant. 2008;17:70 5-712
- 11. Abdallah BM, et al: The use of mesenchymal (skeletal) stem cells for treat ment of degenerative diseases: current status and future perspectives. J Cell Physiol. 2009;218:9-12
- 12. Abdi R, et al: Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes. 2008;57:1759-1767
- 13. García-Olmo D, et al: A phase I clinical trial of the treatment of Crohn's Fistula by adipose mesenchymal stem cell transplantation. Dis Colon Rectum. 2 005;48:1416-1423
- 14. Koç ON, et al: Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant. 2002;30:215-222
- 15. Zurutuza L, et al: Correlations of genotype and phenotype in hypophosphatasia. Hum Mol Genet. 1999;8:1039-1046
- 16. Mornet E: Hypophosphatasia: the mutations in the tissue-nonspecific alkaline phosphatase gene. Hum Mutat. 2000;15:309-315
- 17. Michigami T, et al: Common mutations F310L and T1559del in the tissue-

- nonspecific alkaline phosphatase gene are related to distinct phenotypes in Japanese patients with hypophosphatasia. Eur J Pediatr. 2005;164:277-282 18. Fauvert D, et al: Mild forms of hypophosphatasia mostly result from dominant negative effect of severe alleles or from compound heterozygosity for severe and moderate alleles. BMC Med Genet. 2009;10:51
- 19. Le Blanc K, et al: HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol. 2003; 31:890-896
- 20. Isomoto S, et al: Rapamycin as an inhibitor of osteogenic differentiation in bone marrow-derived mesenchymal stem cells. J Orthop Sci. 2007;12:83-88
- 21. Dong J, et al: Osteoblastic differentiation and in vivo osteogenic activity of marrow-derived mesenchymal stem cells stimulated by tacrolimus: experiment with rats. Zhonghua Yi Xue Za Zhi. 2007;87:190-194
- 22. Moudgil A, et al. Tacrolimus in pediatric renal transplantation: a review. Indian J Pediatr. 1999;66:263-275
- 23. Boucek Jr RJ, et al: Pediatric Heart transplantation. Curr Opin Pediatr. 2002;14:611-619
- 24. McDiarmid SV: The use of tacrolimus in pediatric liver transplantation. J Pediatr Gastroenterol Nutr. 1998;26:90-102
- 25. Sabapathy C, et al: Tacrolimus with mini-methotrexate as prophylaxis for graft-versus-host disease in pediatric patients after allogeneic peripheral blood stem cell transplant or bone marrow transplant. J Pediatr Hematol Oncol. 2008;30:945-949
- 26. Choudhry S, et al: Efficacy and safety of tacrolimus versus cyclosporine in children with steroid-resistant nephrotic syndrome: a randomized controlled trial. Am J Kidney Dis. 2009;53:760-769

研究協力依頼の説明書

島根大学医学部附属病院

研究責任者 講師 竹谷 健

教授(又は所属の長)

教授 山口 清次

研究課題名

[重症低ホスファターゼ症に対する骨髄移植併用問種間蓋系幹細胞移植]

この説明書は上記課題に関する研究にご協力いただくための説明 文書であり、平成22年2月18日に島根大学医学部医の倫理委員会で 承認されたものです。

殿

1. 研究の目的及び方法

1)研究の目的

低ホスファターゼ症は、骨を作るのに必要なアルカリホスファターゼという 酵素が少なく骨ができない遺伝性の病気です。この酵素は骨を作る細胞である 骨芽細胞の上で骨を作るために働きますが、この病気はこの酵素の異常により、 骨芽細胞が新しい骨が作れず、骨がもろくなって骨折してしまいます。特に乳 幼児期にこの病気が発症した患者さんで、呼吸障害があり、かつアルカリホス ファターゼが少ない場合、乳児期早期に骨折、呼吸障害のために亡くなってし まいます。

現在、この病気が治る治療はありません。しかし、最近、致死的な低ホスフ アターゼ症の患者さんに骨髄移植、骨移植、骨芽細胞・間葉系幹細胞の移植に よって救命され、正常に発達している例が報告されました。すなわち、まず健 常人(提供者)の骨髄を移植し、その後提供者の骨を移植して、さらに、骨芽 細胞や骨芽細胞のもと(起源)の細胞である間葉系幹細胞を移植することによ り正常なアルカリホスファターゼを産生する骨芽細胞が患者さんの骨に到達 (生着) して正常な骨を作り出すことができました。したがって、正常の骨を 作る細胞を入れる(移植する)ことでこの病気の患者さんの命を救える可能性 があります。 そこで、今回、私たちは、骨髄移植と間葉系幹細胞移植を一緒 に行うことで重症の患者さんを救命する治療法を開発したいと考えています。 その理由として、以下のことが挙げられます。

① 治療の方法や安全性が明らかな骨髄移植を行い、間葉系幹細胞が拒絶さ れない環境を整えてから、間葉系幹細胞を移植することで間葉系幹細胞 が正常な骨を作ることができることが予想される。

- ② 骨髄移植と間葉系幹細胞移植をして症状が改善した患者さんがいる
- ③ 間葉系幹細胞を培養増殖する技術が確立している

しかし、確立した治療ではないことから、この病気の患者さんに対してこの 治療をさせて頂くにあたり詳しく説明させて頂きます。

2)方法

① 重症低ホスファターゼ症の診断

低ホスファターゼ症は、四肢の短縮や変形、易骨折性、体重増加不良、低身長などで発見されて、血清アルカリホスファターゼが低いことで診断されます。致死的なタイプは、周産期あるいは乳児期のいずれかに発症し、呼吸障害を認めかつ、アルカリホスファターゼの機能を低くする遺伝子異常を持っています。したがって、呼吸障害の有無およびアルカリホスファターゼの遺伝子の検査を行って、重症のタイプか調べます。この重症のタイプが今回の治療の適応となります。また、骨髄穿刺により骨髄を採取して、産総研・健康工学研究部門で間葉系幹細胞を増やし(培養)、間葉系幹細胞が増える能力および骨を作る能力を調べます。

② 対象者

今回の治療の対象者は、この病気で亡くなることが予想される患者さんです。具体的には、生後6か月以内に発病して、呼吸障害を認め、アルカリホスファターゼの機能を低くする遺伝子異常および骨を作る能力の低い間葉系幹細胞を持っている患者さんです。

③ 骨髄提供者の選定

この治療では健康な人の骨髄および間葉系幹細胞を使用します。間葉系幹細胞は骨髄に存在するため、ご家族(2親等内)の中の健康な人の骨髄を採取する必要があります。最も適切な骨髄および間葉系幹細胞を持つ人を症状および血液検査(感染症検査(HIV(ヒト免疫不全ウイルス)、HBV(B型肝炎)、HCV(C型肝炎)、HTLV1(成人T細胞白血病ウイルス)を含む)、アルカリホスファターゼ遺伝子の検査、自分と他人の違いを認識するHLA検査(骨髄移植の場合、HLAがなるべく一致していることが望まれます)から選びます。骨髄提供者の優先順位は、両親がアルカリホスファターゼ遺伝子異常を認めても骨などの症状が正常で、患者さんとのHLAが一致していなくても骨髄移植に耐えうる場合、両親のどちらかを骨髄提供者とさせて頂きます。

しかし、両親のどちらも当該疾患に関連する症状があったり(すなわち、アルカリホスファターゼの機能を著しく低くするアルカリホスファターゼ遺伝子異常を持っていたり)、HLAがかなり一致しておらず骨髄移植の合併症であるGVHDや拒絶反応などの重篤な有害事象を発生する可能性が高い場合にのみ、未成年である同胞(兄弟姉妹)を骨髄提供候補者とさせて頂きます。

万が一、未成年である同胞が骨髄提供候補者になる場合、未成年の人権 保護に十分に留意して、ご両親に説明させて頂きます。なお、未成年者で ある骨髄提供候補者が自らの意思を表明できる場合は、その意思を尊重すること(意に反して提供させることのないよう)にいたします。なお、未成年者からの骨髄採取について、両親に説明して同意を得るだけではなく、可能な限り未成年者本人にも十分に説明致します。この場合、15歳以上の場合には、本人の承諾を得て行います。本人の承諾のない場合には、骨髄提供者としません。15歳未満の場合には、年齢に応じて本人に理解できるように説明を試み、可能な限り本人の承諾を得ることに努力します。さらに、未成年者が骨髄提供者になる場合、島根大学医の倫理委員会で骨髄提供者としての妥当性を審査して、また、ソーシャルワーカーあるいはコーディネーターから家族および未成年である提供者に説明を行った後に、未成年が提供者として適切かどうか決定します。

④ 骨髄提供者からの骨髄採取

最も適している間葉系幹細胞を持っているご家族(2親等内)の中の健康な人に骨髄採取の説明を行い、同意を得られた後、骨髄を採取します。骨髄採取は、無菌での操作が必要であるため、手術室あるいは無菌室で行います。骨髄採取量は100·120mlです。採取中の麻酔は骨髄提供者(もしくはそのご家族)、小児科医師および麻酔科医師の診察などにより決まります。

⑤ 骨髄移植

正常なアルカリホスファターゼを持った間葉系幹細胞を患者さんの骨に生着させ、正常に機能させるためには、正常に機能している間葉系幹細胞を持った適切な提供者から間葉系幹細胞を供与して頂く必要があります。提供者が決定すれば、間葉系幹細胞を提供者の腰の骨(腸骨)から採取して、患者さんに点滴で(経静脈的に)投与します。しかし、患者さんに提供者の間葉系幹細胞をそのまま投与すると、投与された間葉系幹細胞は他人の細胞であるため、拒絶反応のために投与された正常な間葉系幹細胞が壊されてしまいます。したがって、間葉系幹細胞が拒絶されないように、患者さんの拒絶反応などの免疫の働きを持っている血液細胞を提供者のものに置き換えておく必要があります。そのために、血液細胞を有している骨髄を移植することが必要となります。

具体的には、抗がん剤を使って、患者さんの血液細胞をなくします。その後、提供者から採取された骨髄液を経静脈的に投与することによって、 提供者の血液細胞に置き換えます。

⑥ 間葉系幹細胞の培養増殖

採取された骨髄は産業技術総合研究所・健康工学研究部門に搬送されます。牛胎児血清を含んでいる液体培地の中に骨髄を培養すると、1ヶ月頃までに間葉系幹細胞が増えてきます。なお、牛の血清を使用することで狂牛病との関連が危惧されています。牛海綿状脳症の発生していない地域(ニュージーランドあるいはオーストラリア)の血清で、放射線照射処理済みのものを使用することなどで可能な限りの対処を行います。なお、万が一、増やした間葉系幹細胞に細菌などが混入した場合、その細胞は廃棄し、再度、骨髄提供者から骨髄を採取して、新たに間葉系幹細胞を調整し

ます。

⑦ 間葉系幹細胞移植

. 産総研で増やした間葉系幹細胞を患者さんの静脈に点滴で投与します。 その後、患者さんの体内に入った間葉系幹細胞が長期間正常に働くために、 免疫抑制剤(タクロリムス、プログラフ®)を点滴または内服で使用しま す。使用期間は移植後半年までです。しかし、症状や検査の値によって、 使用期間が延長することがあります。移植を行ったあと、定期的に診察、 血液検査、尿検査、レントゲン検査などを行い、注意深く経過を観察致し ます。

⑧ 再移植

呼吸状態の悪化、骨折、体重増加不良などの臨床症状の悪化がみられた 場合に、同じ方法で間葉系幹細胞移植を行うことがあります。その時は、 再度、説明して同意を取らせて頂きます。

2. 予期される効果, 並びに危険性とその対処方法

1) 予期される効果

これらの治療が成功した場合、患者さんは数か月後に徐々に骨が強くなり、自分で呼吸できるようになります。その後、からだの大きさは小柄となる可能性がありますが、知能は正常に発達することが予想されます。

2) 危険性とその対処方法

骨髄移植および間葉系幹細胞移植を行うにあたり以下に示すような副作用、合併症、後遺症の危険性があります。その危険性が最小限になるように以下に示すような対処を行い、最善を尽くします。

① 骨髓移植

- 1) 抗腫瘍剤による副作用
 - ・骨髄抑制による赤血球減少(貧血)、白血球減少、血小板減少
 - →輪血、白血球を増加させる薬で対処します。
 - ・消化器症状:悪心、嘔吐、下痢、食欲低下、口内炎など
 - →輸液、制吐剤投与などで対処します。
 - ・肝機能障害、腎機能障害など
 - →その時点で原因を調べて、原因に対する適切な治療を行います。
- 2) 移植片対宿主病(GVHD)
 - ・提供者の免疫担当細胞が患者さんの臓器(主に肝臓、腸管、皮膚)を攻撃して生じる病気です。
- →移植後、免疫抑制剤を投与してこの病気を予防します。もし発症した場合、 免疫抑制剤を増量あるいは変更して対処します。
- 3) 感染症
 - ・白血球が少ない時期や、免疫抑制剤を投与している時期は、感染しやすい

状態です。特に、通常ならば感染しない弱いウイルスや細菌などに感染しや すくなります。

→抗ウイルス薬などの予防投与を行います。もし、発症した場合、感染源を明らかにして、その治療を行います。

4) 拒絶反応

- ・提供者の血液細胞を患者さんが拒絶してしまう場合があります。
- →原因を確かめて、最善の治療を行います。

5) その他

- ・呼吸障害、血管障害など
- →それぞれの状態を正確に把握して、最善を尽くします。 特に、現在すでに呼吸を補助している状態であり、肺炎などの感染に伴う呼吸不全を起こす危険があります。

② 間葉系幹細胞移植

間葉系幹細胞を投与することで起こる副作用は、アレルギー反応があります。 これに対しては、間葉系幹細胞を移植する前にアレルギーを抑える薬(抗ヒスタミン剤およびステロイド)を投与して、予防します。

③ 免疫抑制剂

今回の骨髄移植のGVHD予防および間葉系幹細胞移植の拒絶予防に対して、タクロリムスという免疫抑制剤を使用します。タクロリムス(プログラフ®)の副作用は、腎障害、高血糖、中枢神経障害(頭痛、けいれんなど)、心不全、高血圧、低マグネシウム血症、高カリウム血症、高コレステロール血症、腹部膨満、下痢、多毛、手指の振戦、感染症などが挙げられます。これらの副作用は、血中濃度に比例するものが多いことから、血中濃度測定を定期的に行い、至適濃度内に管理します。また、症状を観察し、定期的な検査を行うことで、もし副作用が生じた場合、早期に副作用を発見し、対処します。また、感染症に関しては、抗菌薬内服などで予防に努めます。

④ その他

提供者の間葉系幹細胞が生着したかどうか判定するために、定期的に骨髄検査を行います。この疾患は骨が弱いため、骨髄検査に伴う骨折の危険性があります。しかし、骨髄検査に精通した医師が行うこと、同じ疾患に骨髄検査を数回行ったが骨折などの有害事象が発生していないので、その可能性は低いと思われます。また、骨折が生じにくく、骨髄検査を行いやすい腸骨から骨髄検査を行います。もし、骨折が生じた場合、整形外科の医師とともに、その治療を行います。

3. 間葉系幹細胞の保存および基礎的研究

培養された間葉系幹細胞の一部は安全性の確認のため、凍結して10年間保存します。さらに、余った細胞は基礎的研究に使用させて頂きます。

4. 費用負担とその補償

臨床研究にかかわる費用は研究費でまかなわれます。臨床研究に使用された 臨床研究用医薬品或いはそれに関連する医療行為による副作用の補償対する 保険への加入が義務付けられています。万一あなたのお子さんに健康被害が生 じた場合、その保険から医療費などを負担します。しかし、この臨床研究に対 して、保険を引き受ける保険会社がなかった場合は、この治療により生じる副 作用に対する費用補償を行うことができません。

5. 当該疾患に対する他の治療法の有無及びその方法

現在の段階では、重症低ホスファターゼ症において上記の治療以外で救命で きた例はありません。

6. 研究への協力に同意した後であっても、自らの自由意思でいつでも同意を撤回でき、また、そのことによって不利益を受けないこと。

本治療への参加の同意はご家族の自由意志であり、同意しない場合でも不当な診療上の不利益を受けるものではありません。同意後も、ご家族(またはあなたのお子さん)の意志によりいつでも撤回することができ、それによる不利益を受けることはありません。

7. 研究成果の公表と個人情報の保護

本治療で得られた結果やデータは学会や学術論文として公表する可能性がありますが、あなたのお子さんの名前などは一切伏せられた状態で取り扱われます。従って、あなたのお子さんの人権は守られ、あなたのお子さんの個人情報に関わるすべての秘密を保証します。また、資料の保存の際に、匿名化を行います。具体的には、氏名・生年月日などの個人を特定できる情報をコード化して、あなたのお子さんに関する情報は情報管理者の責任の下で、書類・データーベース等に厳重に保管させて頂きます。

8. 知的財産権に関して

本研究の結果として特許権などが生じる可能性がありますが、その権利は、患者さんとその家族、骨髄提供者に帰属しません。

9. 研究に対するご相談の体制

本治療に対して疑問がある場合には、担当の先生に何でもいつでも質問し、説明を受けてください。また、担当の先生にお聞きになりにくいことや、本治療の責任者に直接質問されたい場合は、下記の研究代表者までお問い合わせください。以上の点をご理解いただいたうえで、研究へのご協力をお願い申し上げます。なお、今後、この件に関してのお問い合わせは、以下にお願いいたします。

研究代表者: 竹谷健 島根大学医学部附属病院輸血部・講師

〒693-8501 島根県出雲市塩冶町89-1

TEL: 0853-20-2409 FAX: 0853-20-2409 E-mail ttaketani@med.shimane-u.ac.jp

説明日:平成 年 月 日

説明者

電話番号: 0853-20-2409

別記様式第10号(別記様式第1号5関係、別記様式第2号16関係)

同 意 書 (患者さんご家族)

島根大学医学部長 殿

私は	:、Γ;	重症低力	マスファ	ターゼ	症に対す	する骨質	移植併月	用同種!	間葉系幹	幹細胞移植	」の実施計
画につ	いて	、平成2	2年2月	18日(こ島根大	学医学	部医の解	命理委員	具会で産	は認された	説明書によ
り、事	前に	十分な記	说明を引	受けま	した。さ	きらに	(説明者) カュ	ら、平成
年	月	日	こ、再月	ま、説見	明書に基	らづいて	次の事項	頁につい	いて十分	な説明を	受け理解し
ました	ので	、研究は	こ協力で	するこ	とに同	意いたし	<i>、</i> ます。				
				∃ (□	の中に	/を入れ	れてくだ	さい)			
		目的及び れる効児		KIT任	除州レン	この針句	1.专注				
	一般的		₭, 业(ハール	灰圧と	C 07 X1 X					
		担とその	り補償								
	該疾	患に対す	する他の	り治療	法の有知	無及びそ	の方法				*
								由意思	でいつ	でも同意を	:撤回でき,
_	•	そのこと					_	,			
							するこ。	-	老がな	マ (転金の女	7 .
		関りる <i>は</i> 竹谷健)						九貝江	白じめ	る(輸血部	3 • ·
P 40	 htiih	11/0.05/	ر رب ۱ <i>۸۰</i> 		·		·				
上記の	内容	を理解し	しました	こので	、下記の	のように	返答致	します。			
							的研究		-		
口骨	髄移	植併用	間葉系草	幹細胞	移植に	は同意し	_ン ますが	、基礎	的研究	は拒否しま	きす。
平	成	年	月	日							
	,									C - L 1999 >	
		同意者 住所	(本人)							〔自署〕	
		エクロ									
		代諾者	(続柄	:)					[自署]	
		住所									
(同)	意書を	・提出し	た後、	同意を	撤回さ	れる場	合は、下	記に署	名の上	、ご提出く	(ださい。)
صل ب		n- 224-4-n i	≠ er								
島根	大字	医学部	長 殿								
私は	. [·	■症低:1	マスファ	ターゼ	非に対す	トる骨質	移槽供用	书 同種 「	打掌系的	全細胞移植	」の研究協
力に、			月				E したが				
								•			
	平成			日						- 1 mm	
		同意者	(本人)							〔自署〕	
		住所									
		代諾者	(続柄)					〔自署〕	
		住所	7024114	-	,					, m . m .	

研究協力依頼の説明書

島根大学医学部附属病院

研究責任者

講師 竹谷 健

教授(又は所属の長)

教授 山口 清次

研究課題名

[重症低ホスファターゼ症に対する骨髄移植併用同種間葉系幹細胞移植] に対する骨髄採取

この説明書は上記課題に関する研究にご協力いただくための説明 文書であり、平成22年2月18日に島根大学医学部医の倫理委員会で 承認されたものです。

殿

1 はじめに

低ホスファターゼ症は、骨を作るのに必要なアルカリホスファターゼという酵素が少なく骨ができない遺伝性の病気です。この酵素は骨を作る細胞である骨芽細胞の上で骨を作るために働きますが、この病気はこの酵素の異常により、骨芽細胞が新しい骨が作れず、骨がもろくなって骨折してしまいます。特に乳幼児期にこの病気が発症した患者さんで、呼吸障害があり、かつアルカリホスファターゼが少ない場合は、呼吸障害のために生後1年以内に亡くなってしまいます。現在のところ、この病気を治す治療はありません。しかし、最近、骨髄移植、骨移植、骨を作る細胞(骨芽細胞・間葉系幹細胞)の移植によって命が助かり、体は小柄ですが知能は正常に発達している患者さんが報告されました。そこで、今回、私たちは、骨髄および間葉系幹細胞を患者さんに移植することで、患者を救命する治療法を開発したいと考えています。

この治療を行うには、正常に機能するアルカリホスファターゼを持った骨髄 および間葉系幹細胞を持っている人からこれらの細胞を供与して頂く必要が あります。間葉系幹細胞は骨髄の中に存在することから、健康な人から骨髄採 取という方法で骨髄を頂く必要があります。この骨髄採取をさせて頂くにあた り説明させて頂きます。

なお、骨髄提供者の選定基準は以下の通りです。

- ① 患者のご家族(2親等以内)である
- ② 症状および骨レントゲン、骨密度などから、骨形成が正常に行われている
- ③ ALP活性が正常である
- ④ ALP遺伝子が正常である、または、ALP遺伝子異常があってもALP活性が正

常である

- ⑤ HLAが一致している、または、一致していなくても骨髄の生着や重篤な移植 後合併症が起きる可能性が低い
- ⑥ 感染症マイナス(HIV(ヒト免疫不全ウイルス)、HBV(B型肝炎)、HCV(C型肝炎)、 HTLV1(成人T細胞白血病ウイルス)検査結果陰性)である
- ⑦ その他、骨髄提供者として不適切な条件を有していない

骨髄提供者の優先順位は、両親がアルカリホスファターゼ遺伝子異常を認めても骨などの症状が正常で、患者さんとのHLAが一致していなくても骨髄移植に耐えうる場合、両親のどちらかを骨髄提供者とさせて頂きます。しかし、両親のどちらも、アルカリホスファターゼの機能を著しく低くするアルカリホスファターゼ遺伝子異常を持っていたり、HLAがかなり一致しておらず骨髄移植の合併症であるGVHDや拒絶反応などの重篤な有害事象を発生する可能性が高い場合にのみ、未成年である同胞(兄弟姉妹)を骨髄提供者とさせて頂きます。万が一、未成年である同胞が骨髄提供者になる場合、未成年の人権保護に十分に留意して、ご両親に説明させて頂きます。

この治療では健康な人の骨髄および間葉系幹細胞を使用します。間葉系幹細胞は骨髄に存在するため、ご家族(2親等内)の中の健康な人の骨髄を採取する必要があります。最も適切な骨髄および間葉系幹細胞を持つ人を症状および血液検査(感染症検査(HIV(ヒト免疫不全ウイルス)、HBV(B型肝炎)、HCV(C型肝炎)、HTLV1(成人T細胞白血病ウイルス)を含む)、アルカリホスファターゼ遺伝子の検査、自分と他人の違いを認識するHLA検査(骨髄移植の場合、HLAがなるべく一致していることが望まれます)から選びます。骨髄提供者の優先順位は、両親がアルカリホスファターゼ遺伝子異常を認めても骨などの症状が正常で、患者さんとのHLAが一致していなくても骨髄移植に耐えうる場合、両親のどちらかを骨髄提供者とさせて頂きます。

しかし、両親のどちらも当該疾患に関連する症状があったり(すなわち、アルカリホスファターゼの機能を著しく低くするアルカリホスファターゼ遺伝子異常を持っていたり)、HLAがかなり一致しておらず骨髄移植の合併症であるGVHDや拒絶反応などの重篤な有害事象を発生する可能性が高い場合にのみ、未成年である同胞(兄弟姉妹)を骨髄提供候補者とさせて頂きます。

万が一、未成年である同胞が骨髄提供候補者になる場合、未成年の人権保護に十分に留意して、ご両親に説明させて頂きます。なお、未成年者である骨髄提供候補者が自らの意思を表明できる場合は、その意思を尊重すること(意に反して提供させることのないよう)にいたします。なお、未成年者からの骨髄採取について、両親に説明して同意を得るだけではなく、可能な限り未成年者本人にも十分に説明致します。この場合、15歳以上の場合には、本人の承諾を得て行います。本人の承諾のない場合には、骨髄提供者としません。15歳未満の場合には、年齢に応じて本人に理解できるように説明を試み、可能な限り本人の承諾を得ることに努力します。さら

に、未成年者が骨髄提供者になる場合、島根大学医の倫理委員会で骨髄提供者としての妥当性を審査して、また、ソーシャルワーカーあるいはコーディネーターから家族および未成年である提供者に説明を行った後に、未成年が提供者として適切かどうか決定します。

2 目的

重症低ホスファターゼ症の患者さんに骨髄移植および間葉系幹細胞移植を 行うために、骨髄を採取させて頂きます。

3 方法

骨髄採取をさせて頂く前に、骨髄採取を行うための諸検査(尿検査、血液検査(感染症検査(HIV(ヒト免疫不全ウイルス)、HBV(B型肝炎)、HCV(C型肝炎)、HTLV(成人T細胞白血病ウイルス)を含む)、心電図、胸部レントゲン写真撮影など)を行わせて頂き、これらの検査に異常がないことを確認します。

骨髄採取は、無菌での操作が必要であるため、手術室または無菌室で行います。骨髄採取量は100~120mlです。採取中の麻酔は骨髄提供者(あるいはそのご家族)、小児科医師および麻酔科医師の相談の上で決まります。

採取された骨髄液は骨髄移植に用いて、その一部は間葉系幹細胞を増やすために使用されます。試験管内で増えた間葉系幹細胞を患者さんに移植します。 患者さんの状態およびによっては、繰り返し間葉系幹細胞を移植する必要があるため、また、試験管内で増えた間葉系幹細胞に細菌などが混入した場合、その細胞は破棄するため、再度骨髄採取を行わせて頂くことがあります。その時は、再度、説明して同意を取らせて頂きます。

4 予期される効果

これらの治療が成功した場合、患者さんは数か月後に徐々に骨が強くなり、 自分で呼吸できるようになります。その後、身体のサイズは小柄となる可能性 がありますが、知能は正常に発達することが予想されます。

5 危険性とその対処方法

これまでの報告では骨髄採取の合併症として、採取部位の痛みおよび出血、発熱、排尿時痛、肝機能障害などが挙げられます。麻酔による重大な事故は極めて低率ではありますが一定の確率で起こっていることは事実です。これらが生じた場合、全力を挙げて適切な治療をさせて頂きます。なお、これまで骨髄採取時の全身麻酔は全世界で5万件以上といわれていますが、死亡事故は2件報告されています。

6 基礎的研究

培養された間葉系幹細胞の一部は安全性の確認のため、10年間凍結保存します。さらに、余った細胞は基礎的研究に使用させて頂きます。

7 費用負担とその補償

骨髄採取にかかわる費用は研究費でまかなわれます。臨床研究に使用された 臨床研究用医薬品或いはそれに関連する医療行為による副作用の補償対する 保険への加入が義務付けられています。万一あなた(あなたのお子さん)に健 康被害が生じた場合、その保険から医療費などを負担します。しかし、この臨 床研究に対して、保険を引き受ける保険会社がなかった場合は、この治療によ り生じる副作用に対する費用補償を行うことができません。

8 当該疾患に対する他の治療法の有無及びその方法

現在の段階では、重症低ホスファターゼ症において上記の治療以外で救命できた例はありません。

9 骨髄採取を受けることに同意した後であっても、自由意思でいつでも同意を撤回でき、また、そのことによって不利益を受けないこと。

骨髄採取を受けることに同意された後でも、ご本人の自由意思によっていつでも撤回できます。また、その場合でも、患者さんの状態に応じて、できる限りの治療は続けます。したがって、この骨髄採取を撤回された場合でも、いかなる不利益を受けることはありません。

10 個人情報の保護に関すること

骨髄採取で得られた結果やデータは学会発表や学術論文として公表されることがあります。その場合、患者さんや提供者の名前などは一切伏せられた状態で取り扱われます。したがって、患者さんおよびご家族、提供者の人権は守られ、個人情報に関するすべての秘密は保証します。また、資料の保存の際に、匿名化を行います。具体的には、氏名・生年月日などの個人を特定できる情報をコード化して、あなた(あなたのお子さん)に関する情報は情報管理者の責任の下で、書類・データーベース等に厳重に保管させて頂きます。

11 知的財産権に関して

本研究の結果として特許権などが生じる可能性がありますが、その権利は、患者さんとその家族、骨髄提供者に帰属しません。

12 骨髄採取についてのご相談

本治療に対して疑問がある場合には、担当の先生にいつでも何でも質問し、 説明を受けてください。また、担当の先生にお聞きになりにくいことや、本治 療の責任者に直接質問されたい場合は、下記の研究代表者までお問い合わせく ださい。以上の点をご理解いただいたうえで、研究へのご協力をお願い申し上 げます。なお、今後、この件に関してのお問い合わせは、以下にお願いいたします。

研究代表者: 竹谷健 島根大学医学部附属病院輸血部・講師

〒693-8501 島根県出雲市塩冶町89-1

TEL: 0853-20-2409 FAX: 0853-20-2409 E-mail ttaketani@med.shimane-u.ac.jp

説明日:平成 年 月 日

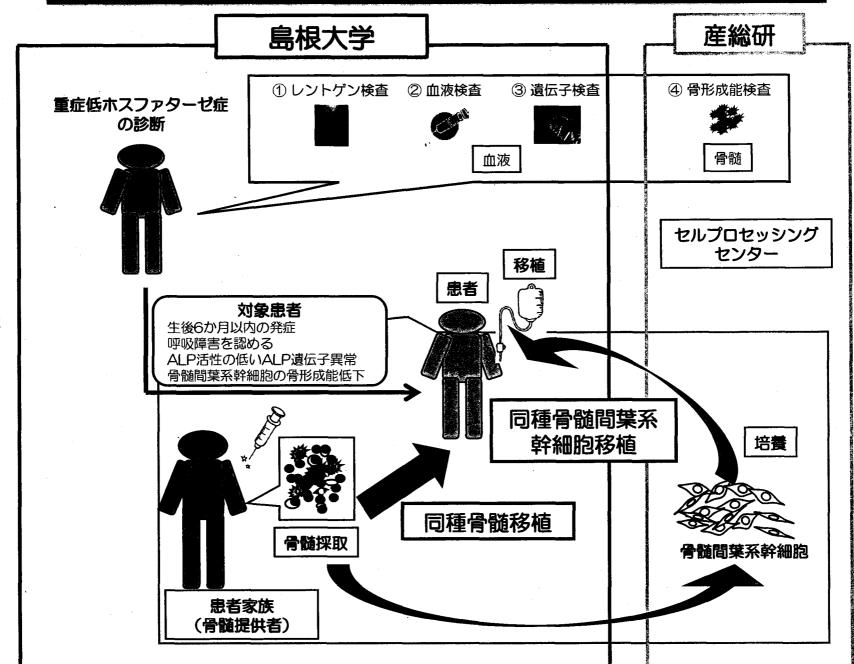
説明者

電話番号: 0853-20-2409

別記様式第10号(別記様式第1号5関係、別記様式第2号16関係)

同意 書(骨髄提供者様)

島根大学医学部長 殿


私は、	「重症低7	トスファター	ぜ症に対する!	骨髄移植 併用同程	擅間葉系幹細胞移植」	の骨髄探
取につい	て、平成2	2年2月18日	日に島根大学図	医学部医の倫理委	委員会で承認された説	明書によ
り、事前	に十分な記	説明を受け	ました。さらし	こ (説明者)から	、平成
年	月 日	に、再度、記	説明書に基づい	ヽて次の事項に~	ついて十分な説明を受	け理解し
ましたの	で、研究	に協力する	ことに同意い	たします。		
□ 研究	の目的及び	び方法	□の中に √ を 危険性とその	入れてください。 対処方法)	
	的研究 負担とその	の補償				
			療法の有無及	びその方法		
		· · · -	後であっても 不利益を受け		思でいつでも同意を推	敢回でき,
□ 研究	成果の発	表および個	人情報の保護	に関すること。	ケンスキッ (松山中)	
		,	間に対して、 説明を受けら		任者である(輸血部・	•
□ 骨髄	採取およ	び基礎的研究	究に同意しま、	 うに返答致しま [、] す。 究は拒否します。		
平成	年	月 日				
	同意者 住所	(本人)			〔自署〕	•
	代諾者 住所	(続柄:)		〔自署〕	
(同意	事を提出し	た後、同意	を撤回される	場合は、下記に	署名の上、ご提出く	ださい。)
島根大	学医学部:	長殿	•			
					種間葉系幹細胞移植 」 これを撤回します。	の骨髄
		月 (本人)	日	1 5	〔自署〕	
•	代諾者 住所	(続柄:)		〔自署〕	

申請分類表

申請者__竹谷 健__

(1) 申請区分 ☑*新規 □継続(□期間延長 □分担者等の変更 □研究方法等の変更 □その他) 〔・継続の場合,変更点を具体的に記載願います
(2)申請内容□*臨床研究□とトゲノム・遺伝子解析研究□医療□とト幹細胞を用いる臨床研究
(3) 研究等の形態 ☑*介入研究 □観察研究 □調査・アンケート
 (4) 研究等の対象 □*ヒト(□本院受診及び入院中の患者が対象となる¹) □左記以外を対象とする²) □検体・データ等(□前向き □後向き³)) ・検体の種類 □血液 □尿 □組織 □その他()
(5) 研究等の単位 □*本学のみ又は他施設と共同で行うが本学が主研究施設となる □上記以外(□他施設の倫理委員会等で承認あり ⁴⁾ □未承認)
(6) 上記□欄のうち、*項目全てにチェックがある場合は保険に加入する必要があるので、研究材料により下記見積依頼書を記入し提出すること ・ <u>見積依頼書【医薬品のみ</u> 】 ・ <u>見積依頼書【医療用器具</u> 】 ・ <u>見積依頼書【その他</u> 】
[注釈] 1) 「利益相反自己申告書(第1次)」を分担者分も取りまとめ、会計課外部資金担当宛提出のこと 2) 健常者、ボランティア、住民健診受検者等 3) インフォームドコンセントの簡略に該当する場合は、研究協力依頼の説明書及び同意書不要 4) 他控制の会理委員会承認通知書館の第1本語はよることが過速要素となる。

重症低ホスファターゼ症に対する骨髄移植併用同種間葉系幹細胞移植

- 112 -

奈良県立医科大学から申請のあったヒト幹細胞 臨床研究実施計画に係る意見について

ヒト幹細胞臨床研究に関する 審査委員会

委員長 永井良三

奈良県立医科大学から申請のあった下記のヒト幹細胞臨床研究実施計画について、本審査委員会で検討を行い、その結果を別紙のとおりとりまとめたので報告いたします。

記

1. 顎骨嚢胞摘出後の骨欠損を対象とした自己骨髄培養細胞由来再生培養骨の有用性を検証する研究

申請者: 奈良県立医科大学 学長 吉岡 章

申請日: 平成21年8月31日

ヒト幹細胞臨床研究実施計画の概要

研究課題名	顎骨嚢胞摘出後の骨欠損を対象とした自己骨髄培養 細胞由来再生培養骨の有用性を検証する研究
申請年月日	平成21年8月31日
実施施設及び 研究責任者	実施施設:奈良県立医科大学 研究責任者:桐田 忠昭
対象疾患	顎骨嚢胞
ヒト幹細胞の種類	骨髄由来間葉系細胞
実施期間及び 対象症例数	登録期間 承認後 5 年間 培養骨移植群 10 症例、自家骨移植群 10 症例
治療研究の概要	本研究は、自家骨移植が必要な比較的規模の大きな顎骨嚢胞に対して、自己骨髄培養細胞由来再生培養骨を用いて骨欠損部への補填を行う治療法の開発を行う。患者自身の骨髄細胞から分離・培養して得られた骨芽細胞とセラミックを複合化することにより得られる培養骨移植法が自家骨移植法の代替法となり得るか検討する。
その他(外国での状況 等)	奈良県立医科大学整形外科学講座では、大腿骨壊死に対して自己骨髄培養細胞の臨床研究が行われた。ドイツではPradelらが、骨髄培養細胞の顎骨疾患へ応用した報告がある。ともに、数例の症例報告がみられる段階にとどまる。
新規性について	本研究は顎骨疾患への応用に関して、骨髄由来間葉系細胞と人工骨を用いることに新規性が認められる。

2. ヒト幹細胞臨床研究に関する審査委員会における審議概要

1) 第1回審議

①開催日時: 平成21年10月7日(水)17:00~19:00

(第9回 ヒト幹細胞臨床研究に関する審査委員会)

②議事概要

平成21年8月31日付けで奈良県立医科大学から申請のあったヒト幹細胞 臨床研究実施計画「顎骨良性腫瘍、顎骨腫瘍類似疾患を対象とした自己骨髄培 養細胞由来再生培養骨の有用性を検証する研究」(対象疾患:顎骨良性腫瘍、顎 骨腫瘍類似疾患)について、申請者からの提出資料を基に、指針への適合性に 関する議論が行われた。

各委員からの疑義・確認事項については、事務局で整理の上申請者に確認を 依頼することとし、その結果を基に再度検討することとした。

(本審査委員会からの主な疑義・確認事項)

- 1. プロトコールについて
- 自家培養骨の定義を明らかにして、インフォームドコンセントにもわかり やすく反映していただきたい。
- 症例選択の基準として、骨欠損のサイズ、周囲骨との立体的関係を記載して、客観性を明らかにしていただきたい。
- 適応に良性疾患があるが、悪性疾患以外で高頻度に再発する疾患は適応除 外にすべき。
- 切除手術をおこなってから、この臨床試験(骨の細胞治療)を開始するまでの期間を明記する必要がある。

2. 研究体制について

○ 産総研との共同研究契約では、医師が赴いて自ら細胞を培養することと、 産総研の CPC の入退室管理システムなどによりそのことを記録保管することは 可能か。

3. 品質・安全性について

- 培養で用いたゲンタマイシンについて、移植時の残存量について示してください。
- MSC は増幅培養(約 2+1 週間)、分化培養工程(約 2 週間)とされていますが、それぞれ次の工程へ移るための基準を明らかにしてください。また、もし増幅が遅くなった場合等の対処基準も明らかにしてください。
- 搬出工程について、担当医が品質試験の結果を見て搬出の可否判定を行う とありますが、その基準等を明らかにしてください。
- エンドトキシンについて、最終製品での試験を行うこと。ウイルス等の試験方法を説明してください。また、マイコプラズマ否定試験については、PCR 法で妥当とする根拠を説明してください。
- クーラーボックスでの搬送の際に、安全性に問題はないか。また、搬送中

にクーラーボックス内の温度が異常であった場合を想定し、移植を実施する前 に奈良県立医大で搬送中の温度記録の確認を行うことが推奨される。

- 4. インフォームドコンセントについて
- 患者の選択により治療方法を決定することを明示し、それぞれの治療法について詳しく説明を求める。
- 被試験者への説明文に、細胞治療がおこなえなかった場合の対処方法も記載して欲しい。

2) 第2回審議

①開催日時: 平成22年1月7日 (木)16:00~18:00 (第10回 ヒト幹細胞臨床研究に関する審査委員会)

②議事概要

前回の審議における本審査委員会からの確認に対し、奈良県立医科大学から 回答書及び追加資料が提出されたことを受けて、引き続き実施計画の指針への 適合性について、第2回目の審議を行った。

各委員からの疑義・確認事項については、事務局で整理の上申請者に確認を依頼することとし、その結果を基に再度検討することとした。

(本審査委員会からの主な疑義・確認事項)

- 1. プロトコールについて
- 高頻度に再発する良性腫瘍は適応疾患から除外すべきである。なぜなら、 再発に対する治療の影響を評価する事が困難であり、副作用としての腫瘍増殖 を否定することも難しいと考えられるためである。
- 高頻度に再発する良性腫瘍に対しては腫瘍摘出と同時に移植せずに、一定 の経過観察期間後に再発を否定した上で移植治療を行うなどの配慮が必要。
- 高頻度に再発する良性腫瘍を適応に加える正当な理由がある場合には、そ の正当な理由を記載した上で、
- ①有害事象 (腫瘍再発) と治療の関係を確認するためのプロトコールに変更し、 安全性の評価を主目的にすべき。
- ②説明同意文書に腫瘍の再発率を記載し、被験者に治療による影響が不明であることを十分に説明する必要がある。
- ③腫瘍再発に対する治療方法を明らかにして、被験者の安全を保証していただきたい。

2. 品質・安全性について

- エンドトキシンの汚染は、原料や用いる基材からの汚染のほか、細胞培養工程を含めた加工段階での混入も想定される。最終製品を用いてエンドトキシンを測定しておくことは必要。
- 日本薬局方では、PCR 法はあくまでも補助的な手法と位置づけられており、 またその使用に当たっては試験の判定結果がマイコプラズマの否定につながる

とする妥当性を示されなければならないとしている。

○ エンドトキシン試験、マイコプラズマ試験の結果が投与後に明らかになる ことがあると思われるがそのときの対応もそれぞれ追記していただきたい。

3)第3回審議

①開催日時: 平成22年4月2日(金)15:00~17:00

(第11回 ヒト幹細胞臨床研究に関する審査委員会)

②議事概要

前回の審議における本審査委員会からの確認に対し、奈良県立医科大学から 回答書及び追加資料が提出されたことを受けて、第3回目の審議を行った結果、 当該ヒト幹細胞臨床研究実施計画を了承し、次回以降の科学技術部会に報告す ることとした。

3. ヒト幹細胞臨床研究に関する審査委員会における審議を踏まえた第1回審議 時からの実施計画及び被験者への同意説明文書などの主な変更内容

(実施計画書)

- 患者さん自身の骨髄から骨を作る細胞を取り出し、体の外で骨を作ったものを再生培養骨と定義し、それを患部に移植することとした。
- 対象疾患から良性腫瘍は除外し、顎骨嚢胞のみを対象とした。臨床研究の 名称を「顎骨嚢胞摘出後の骨欠損を対象とした自己骨髄培養細胞由来再生培養 骨の有用性を検証する研究」と変更した。
- 被験者等の選定基準として、長径 2~4cm の骨欠損、骨壁が 2 壁以上残存している症例を対象とした。
- 細胞培養作業は、奈良県立医科大学の医師・歯科医師が培養して、産総研のスタッフがサポートすることとした。

(試験物概要書)

- 再生培養骨は生理食塩水で3回洗浄後に移植するため、ゲンタマイシン量を計算し、総量が16.9μgとの極めて微量な結果であることを示した。またゲンタマイシンによるショックの既往がある患者は対象患者から除外した。
- 最終製品を用いてエンドトキシン試験を行うこととした。自己血清含有培地の無菌試験およびエンドトキシン試験、患者骨髄および培養上清の無菌試験、最終培地交換時の培養細胞およびその時の培養上清を用いたマイコプラズマ否定試験がいずれも陰性の時、搬出可とした。また、マイコプラズマ否定試験の検出感度及び特異性の検証実験について示した。
- 細胞の増殖が著しく不良の場合は、主治医および研究責任者が協議の上、 患者の意思を確認し、従来の治療法を行うこととした。

4. ヒト幹細胞臨床研究に関する審査委員会の検討結果

奈良県立医科大学からのヒト幹細胞臨床研究実施計画(対象疾患: 顎骨嚢胞) に関して、ヒト幹細胞臨床研究に関する審査委員会は、主として倫理的および 安全性等にかかる観点から以上の通り論点整理を進め、それらの結果を実施計 画及び患者への同意説明文書に適切に反映させた。その上で、本審査委員会は 本実施計画の内容が倫理的・科学的に妥当であると判断した。

次回以降の科学技術部会に報告する。

平成21年8月31日

厚生労働大臣 殿

研	所在地	〒634-8522 奈良県橿原市四条町840
完 機 関	名称	奈良県立医科大学
	研究機関の長 役職名・氏名	学長 吉 岡 章

下記のヒト幹細胞臨床研究について、別添のとおり実施計画書に対する意見を求めます。

記

ヒト幹細胞臨床研究の課題名	研究責任者の所属・職・氏名
顎骨良性腫瘍、顎骨腫瘍類似疾患を対象と した自己骨髄培養細胞由来再生培養骨の 有用性を検証する研究	奈良県立医科大学 口腔外科学講座 教授 桐 田 忠 昭

臨床研究の名称		顎骨嚢胞摘出後の骨欠損を対象とした自己骨髄培養細胞 用性を検証する研究	由来再生培養骨の有
研究機関			
名称		奈良県立医科大学	
所在地		〒634-8522 奈良県橿原市四条町840番地	
電話番号		(0744)22-3051	
FAX番号		(0744)29-8876	
役職		奈良県立医科大学学長	
氏名		吉岡 章	印
研究責任者	·		
所属		奈良県立医科大学 口腔外科学講座	
役職		教授	
氏名		桐田 忠昭	ΕΠ
連絡先	Tel/Fax	Tel:0744-29-8875 /Fax:0744-29-8	875
	E-mail	oralsurg@naramed-u.ac.jp	
最終学歴		昭和62年 3月 奈良県立医科大学大学院医学研究科 修	? 7
専攻科目		口腔外科学	
 その他の研究	 者	別紙1参照	
共同研究機関	(該当する場合	のみ記載してください)	
名称		独立行政法人産業技術総合研究所 セルエンジニアリンク エ学研究グループ	·研究部門組織·再生
所在地		〒661-0974 兵庫県尼崎市若王寺3-11-46	
電話番号		06-6494-7807	
FAX番号		06-6494-7861	

氏名	野間口 有
臨床研究の目的・意義	顎骨嚢胞の治療法として、摘出術、病巣掻爬術等がある。手術後には、顎骨内に大きな骨欠損が生じ、口腔顔貌の変形のみならず口腔の機能障害をきたす。このため従来から患者の健常部から採取した自家骨またはセラミックなどの人工骨を移植骨として用いていた。自家骨を用いる場合、採取量に限りがあるだけではなく、健常部に侵襲を与えるため、術後採骨部の感染、神経麻痺などの合併症が起こる可能性があり、その代替法の開発が望まれている。人工骨を移植骨として用いる方法では、大きな骨欠損には適用は難しく、またセラミック等の人工材料自体に骨形成能力がないため、人工材料と周囲の骨組織が結合するのに長期間を要する。本研究の目的は、患者自身の骨髄細胞から分離・培養して得られた骨芽細胞とセラミックを複合化することにより得られる、骨形成能を有する骨移植材料(培養骨)が自家骨移植法の代替法となりうるのかを検討する非劣勢試験である。具体的には、培養骨移植群と自家骨移植群を画像上比較し、形態的および機能的な再建に対する培養骨移植の有効性の検証を行う。本治療法が確立されれば、自家骨移植を回避することができ、患者に与える恩恵は大なるものである。
臨床研究の対象疾患	
名称	顎骨嚢胞
選定理由	顎骨内には、さまざまな嚢胞や腫瘍が生じ、これらは、摘出・掻爬後、大きな骨欠損を生じるものもある。このため、顎顔面の変形や咀嚼・発音機能障害が生じたり、2次的な顎骨骨折が生じる可能性があり、骨欠損部への補填が必要となる。本研究では、これらの疾患のうち再発率が極めて低い顎骨嚢胞を対象疾患として選定した。
被験者等の選定基準	対象は奈良県立医科大学附属病院歯科口腔外科を受診した上記疾患を有する患者で、骨欠損に対し自家骨移植が必要と判断された患者とする。単独でインフォームド・コンセントを与えることが困難な者は被験者としない。対象年齢は、20歳以上70歳未満とする。症例数は実験群(培養骨移植群)10例、対象群(自家骨移植群)10例とし、研究期間は承認後5年間とする。患者の各群への振り分け方法は、実験群・対象群及び本研究に参加しない場合のそれぞれについて患者に説明を行い、患者自らが研究に参加するか否か、研究に参加の場合はいずれの群に参加するかを決定する。実験群及び対象群については、各々10例に達した時点で各群への受け入れを中止する。また、実験群・対象群ともに10例に達した時点で本研究は終了する。
臨床研究に用いるヒト幹細胞	
種類	骨髓由来間葉系細胞
由来	自己·非自己·株化細胞 生体由来·死体由来

	The second secon
採取、調製、移植又は投与の方法	思者の陽骨から10数mlの骨髄を骨髄針を用いて採取し、ヘバリンを添加した PBS(Phosphate buffered saline)を含む滅菌試験管に加える。採取は医師と連携の上、主治医が中央手術室あるいは口腔外科外来手術室で行う。麻酔はキシロカインを用いた局所麻酔を使用する。自己血清を培養に用いるので、骨髄採取日、もしくはそれ以前に約400mlの患者血液を中央手術室あるいは口腔外科外来手術室で採取して血清を分離する。主治医が産業技術総合研究所内セルプロセッシングセンターにて、産業技術総合研究所のスタッフの監督のもと、培養操作を行う。なお、セルプロセッシングセンターは、より高度な細胞処理を行うことを考慮され、平成20年度に産業技術総合研究所内に新たに構築されている。本セルプロセッシングセンターにおいて試験培養をおこない、従来通りヒト間葉系幹細胞の増殖や骨芽細胞への分化に問題がない事を確認している(添付書類:新規CPCでの試験的培養)。産業技術総合研究所における作業においては主治医がその責任を負う。製造指示記録書に培養を担当した主治医名血清を含んでいる液体を動する。培養は20μg/mL硫酸ゲンタマイシンと15%自己血清を含んでいる液体培地(α-MEM: GIBCO カタログ番号12571)に採取した骨髄を混和し、T-75フラスコを用いて炭酸ガス培養器(5%CO2、37°C)内で行う。骨髄2mlに対して20mlの培地を加える。フラスコ底面に接着した細胞を約14日間増殖させる。これは骨髄細胞に含まれる間葉系細胞の増殖である。この増殖した細胞を動物由来成分不含のトリプシン様酵素(TrypLE Select: GIBCO カタログ番号12563)を用いてフラスコより載した無限を人工骨と混和して上記培養条件下に培養を行う。用いる人工骨は、オフェリオン(規格: A1, A2, A3, A4, G1-1, G1-5, G2-1, G2-5, G3-2, G3-5, G4-2, G4-5, 60G2-2, 60G2-5, 60G3-2, 60G3-5, 60G4-2, 60G4-5 医療機器承認番号: 21800BZZ10045000号 製造販売元:オリンパステルモバイオマテリアル株式会社)で、ガンマ線照射により減酸、100nMデキサメタゾンを培地中に添加する。この条件下は接骨を奈良県立医科大学附属病院中央手術室で、腫瘍摘出手術と同日に骨欠損部に生理食塩水もしくはPBSで3回洗浄後に移植する。細胞調整方法
	日に肯欠損部に生理度塩水もUSはPBSで3回洗浄後に移植する。細胞調整方法の詳細に関しては、(添付書類:培養手順)を参照。
調製(加工)行程	有・無
非自己由来材料使用	(有)・無 動物種(ブタ)
複数機関での実施	(有)・無
他の医療機関への授与・販売	· 有 · (無)
1	

ヒト 幹 細 胞 臨 床 研 究 実 施 計 画 書

安全性についての評価

各培養段階において、安全性検査を実施する。培養のための骨髄・血液採取に 用いる容器・その他の機材は全て滅菌されたものを使用し、無菌操作を心がけ る。特に骨髄は滅菌処理が出来ないため、滅菌チューブを二重梱包し、産業技術 総合研究所内セルプロセッシングセンターに搬送する。搬送にあたっては、保冷 剤を入れた運搬用クーラーボックスを用いる。1つのクーラーボックスで、複数の 症例の骨髄を運搬することはない。運搬中、ボックス内は、ほぼ一定の温度(20 ~25°C)に保たれていること、およびこれまでに本方法にて搬送した骨髄を培養 しても、症例に必要な細胞数が得られていることより、本方法で搬送した骨髄の安 全性および有効性を確認している。自己血より採取した自己血清は液体培地調整 後0.22 µ mフィルターによりフィルター滅菌を行った後、無菌試験、エンドトキシン 試験を行う。骨髄は培養開始時に無菌試験を行う。培養過程において培養操作 時の汚染に対して、無菌試験を行う。さらに最終培地交換時に培養上清より、無 菌試験、マイコプラズマ否定試験、エンドトキシン試験を行い、汚染の最終確認を 行う。移植手術予定日にはこれらの検査結果を踏まえて、主治医がその使用の可 否を判断する。マイコプラズマ否定試験は PCR 法を用いるため, サンプリング後 約1日で結果が得られる。培養開始時に作成する調整培地について行ったエンド トキシン試験は、培養終了時までには結果が得られる。両試験で汚染が確認され た場合は、移植手術を中止する。無菌試験は培養開始時、継代時、最終培地交 換時、最終産物において行っており、培養開始時、継代時については手術前に結 果が得られる。培養開始時、継代時の無菌試験で汚染が確認された場合は、移 植手術を中止する。最終培地交換時、最終産物の無菌試験、エンドトキシン試験 については最終判定を待たず手術に用いることになるが、手術日の報告で陽性と 判断されなければ、移植手術を行う。最終判定にて陽性と判断された場合は、奈 良県立医科大学附属病院 医療安全管理指針に則って、病院長および医療安全 管理委員会委員長に報告するとともに、できるだけ早い段階で患者への説明の機 会を設定する。患者の安全確保を最優先し、必要な検査(血液検査等)および治 療(上記検査での陽性菌に対するスペクトルを有する抗生物質の投与等)を行う。

現在までに産業総合研究所は、大学病院または国立研究機関と共同で80 症例 以上の自己骨髄由来間葉系細胞培養及び移植を行っているが、すべての症例で 細菌、真菌検査の最終判定は陰性であり、術後感染症等の問題は発生していな い。また、無菌試験の結果に関わらず、術後5年間は定期的に局所、並びに全身 状態を観察する。動物由来成分を含有する試薬は骨髄採取に用いるヘパリン(ブ タ)だけである。ヘパリンは日本薬局方のものを採用し安全性を確保する。液体培 地(α-MEM: GIBCO カタログ番号12571)はフィルター滅菌処理済のものを採用す る。細胞剥離剤は動物由来成分を含まない、トリプシン様酵素(TrypLE Select: GIBCO カタログ番号12563)を採用する。添加因子であるアスコルビン酸、 $oldsymbol{eta}$ グリ セロリン酸、デキサメタゾンは全て分析用グレードを用い、フィルター滅菌処理後 に使用する。液体培地に添加する抗菌剤である硫酸ゲンタマイシンは日本薬局方 のものを採用する。その使用にあたっては、事前に硫酸ゲンタマイシンに対する過 敏症の既往がないことを確認する。また、移植直前に最終培養産物は、培地を破 棄し、滅菌生理食塩水もしくはPBSで3回洗浄されるため、薬剤の残留は低減す る。最終培養産物は、専用容器に入れ、3時間以内に奈良県立医科大学付属病 |院手術場に搬入する。 使用した細胞、血清、人工骨は、その一部を後証品として 冷凍保存する。臨床有効性との相関性についての解析、および生存率ならびに細 胞活性を測るため、3次培養時に移植用とは別に細胞培養を行い、手術日にイ メージアナライザーを用いたカルシウム定量測定、ALP定量測定を行う。また、再 生培養骨の一部にて、Alizarin Red S染色、Alkaline phosphate染色、ヌードラット への皮下移植を行う。

臨床研究の実施が可能である 判断した理由	ると 本研究と同様の人工骨(β-TCP)と自己骨髄培養細胞を用いた骨再生医療が、整形外科領域の骨疾患に対し、産業技術総合研究所と奈良医科大学整形外科との臨床研究として行われている。(別紙:同様のヒト幹細胞臨床研究に関する内外の研究状況①、④)。一定の有効性が認められたと報告されており、本臨床研究とは対象部位が異なるものの、骨再生という観点からは差異はなく、安全性および有効性の根拠となりうる。自己骨髄培養細胞の顎骨疾患への応用はドイツ(別紙:同様のヒト幹細胞臨床研究に関する内外の研究状況②)、日本では名古屋大学附属病院歯科口腔外科(別紙:同様のヒト幹細胞臨床研究に関する内外の研究状況③)ですでに行われており、顎骨疾患においても自己骨髄培養細胞を用いた再生医療の有用性が認められている。これらと本研究とは細胞の由来、人工骨の相違等はありますが、培養条件や用いる試薬に基本的に差異はなく、自己骨髄培養細胞を顎骨疾患に移植することの有効性と安全性の根拠となりうると考えられる。(添付書類:内外の研究との比較リスト)また、我々はラットの顎骨モデルを用いた研究を行った(添付書類:前臨床試験)。移植8週後の組織評価において、人工骨(オスフェリオン)移植では骨癒合が認められており、顎骨領域における人工骨移植の無効性および再生培養骨移植の有効性を確認した。
 臨床研究の実施計画	別紙参照(実施計画審査申請書および臨床研究計画書)
 被験者等に関するインフォー	ムド・コンセント
手続	下記説明事項について、インフォームド・コンセントにおける説明文書(添付書類:説明文書)を用いて十分に説明し、理解を得た上で、文書によるインフォームド・コンセントを与える。なお、本臨床研究の実施に際しては、臨床研究に入るとき、骨髄採取時、再生培養骨の移植時の計3回、文書にて同意の確認を行う(添付書類:同意書1、同意書2、同意書3)。
説明事項	①当該臨床研究の目的、意義及び方法 ②当該研究を実施する機関名 ③他の治療法の有無、内容、当該治療法により予期される効果及び危険並びにそれらの治療法との比較 ④被験者となることを拒否することは自由であること、及び自己骨髄培養細胞の移植に同意しない場合であっても、何ら不利益を受けることはなく、また従来の治療が継続されること。⑤被験者となるべき者が自己骨髄培養細胞の移植に同意した後であっても、いつでも同意を撤回できること ⑥無償による提供であること ⑦健康被害に対する補償の有無 ⑧-1個人情報の保護の方法 ⑧-2研究成果が匿名化の上公表されること ⑧-3間い合わせ・苦情の受付先
	ントを与えることが困難な者を被験者等とする臨床研究の場合 る理 単独でインフォームド・コンセントを与えることが困難な者は被験者としない。
代諾者の選定方針	
1	患が 患者に生じた有害事象を最小限にとどめるため、患者の安全確保を最優先し、必要な治療を行う。さらに研究機関の長に速やかに報告し、本学の医療安全管理指針(別紙)に基いて対処する。

方法	末研究終了後の追跡調査の ま	移植が終了し、退院後も本院口腔外科外来にて術後5年間は定期的に局所、並びに全身状態を観察するとともに、術後3ヶ月、6ヶ月、12ヶ月目、以後必要に応じてエックス線撮影もしくはCT撮影を行い、移植部位の状態を評価する。移植後の評価については、術後5年間は定期的に移植部位及び穿刺部位、並びに全身状態を観察するとともに、術後3ヶ月、6ヶ月、12ヶ月目、以後必要に応じてエックス線撮影およびCT撮影を行います。エックス線撮影(パントモグラフィー)の評価は、Grey level measurements法(J. Dentomaxillofac Radiol. 2002, 31:182-186.)を用い、不透過性の変化を経時的に定量評価する。CTでは、同一断面にてMPR(多断面再構成)画像を作製し、骨欠損部位に関心領域(ROI)を設定する。CT値500以上999以下を測定領域とし、病変の最大径を含んだMPR断面についてROI内の測定領域の面積を経時的に定量評価する。
臨月	末研究に伴う補償 	
	補償の有無・	有 無
	補償が有る場合、その内容	
個,	人情報保護の方法	
	連結可能匿名化の方法	研究責任者の責任のもと、氏名、生年月日、住所などの個人を特定できる情報を取り除き、代わりに新たな登録番号をつけ、個人を特定できなくする。また、本研究終了後には連結不可能匿名化を行う。
	その他	研究結果の公表に際しては、個人情報保護法に則り、個人情報の保護に十分配慮する。公表されうる個人に関する情報としては年齢、疾患名、性別のみである。
	り他必要な事項 則を確認してください)	①当該研究に係る研究資金の調達方法本研究に係る外来診療、術前・術後検査、手術(骨髄穿刺を含む)及び細胞培養に掛かる費用は、奈良県立医科大学口腔外科学講座および産業技術総合研究所 セルエンジニアリング研究部門 組織・再生工学研究グループがすべて負担する。
		②既に実施されているヒト幹細胞臨床研究と比較して新規性が認められる事項奈良県立医科大学整形外科学講座などで行われている自己骨髄培養細胞の臨床研究(別紙:同様のヒト幹細胞臨床研究に関する内外の研究状況④)と比較して、対象疾患(顎骨嚢胞)に新規性が認められる。ドイツで行われている自己骨髄培養細胞の顎骨疾患への応用(別紙:同様のヒト幹細胞臨床研究に関する内外の研究状況②)と比較すると、腸骨から骨髄を採取すること及び、人工骨を用いることに新規性が認められる。名古屋大学附属病院歯科口腔外科などで行われている自己骨髄培養細胞の顎骨疾患への応用(別紙:同様のヒト幹細胞臨床研究に関する内外の研究状況③)と比較すると、人工骨を用いることに新規性が認められる。詳細は(別紙:内外の研究状況の比較リスト)を参照。

備考1 各用紙の大きさは、日本工業規格A4とすること。

備考2 本様式中に書ききれない場合は、適宜別紙を使用し、本様式に「別紙〇参照」と記載すること。

添付書類(添付した書類にチェックを入れること)

- 1.研究の流れを示した図やイラストなど
- 2.研究者の略歴及び研究業績
- 3.研究業績
- 4.同様のヒト幹細胞臨床研究に関する内外の研究状況
- 5.その他(資料内容:内外の研究との比較リスト)
- 6.臨床研究の概要をできる限り平易な用語を用いて記載した要旨
- 7.臨床研究に用いるヒト幹細胞の品質等に関する研究成果
- 8.その他(資料内容: 搬送用クーラーボックスの品質を示す書類)
- 9.その他(資料内容: 原材料(試薬等)の品質保証書類)
- 10.インフォームド・コンセントにおける説明文書
- 11.同意文書1, 12.同意文書2, 13.同意文書3
- 14.15.その他(資料内容: 医の倫委要録)
- 16.その他(資料内容:奈良医大 承認書)
- 17.その他(資料内容: 医の倫委名簿)
- 18.その他(資料内容: 医の倫委規定)
- 19.その他(資料内容:奈良医大 実施計画審査申請書)
- 20.その他(資料内容:奈良医大 申請書受付票)
- 21.その他(資料内容:医工学応用実験倫理委員会議事録)
- 22.その他(資料内容:医工学応用実験計画書審査結果)
- 23.その他(資料内容:産総研 承認書)
- 24.その他(資料内容:医工学 委員名簿)
- 25.その他(資料内容:医工学応用実験取扱要領)
- 26.その他(資料内容:医工学応用実験計画申請書)
- 27.研究機関の基準に合致した研究機関の施設の状況
- 28.29.その他(資料内容: 奈良医大手術室平面図・手術室空調)
- 30.その他(資料内容: 標準作業手順書)
- 31.その他(資料内容: 医療安全管理指針)
- 32.その他(資料内容:「自己骨髄培養細胞による顎骨疾患の治療」臨床研究計画書)
- 33.その他(資料内容:疑義回答書)
- 34.その他(資料内容: 前臨床試験)
- 35.その他(資料内容:新規CPCでの試験的培養)

- 36.その他(資料内容:共同研究契約書(原契約書))
- 37.その他(資料内容:平成20年10月度更改契約書)
- 38.その他(資料内容:マイコプラズマ否定試験の感度および特異性の検証実験)
- 39.その他(資料内容:奈良医大整形外科 再生培養骨による有害事象の追跡調査)

臨床研究の概要をできる限り平易な用語を用いて記載した要旨

本臨床研究は、本来自家骨移植が必要な比較的規模の大きな顎骨疾患に対して、患者自身の骨髄細胞から分離・培養して得られた骨芽細胞とセラミックを複合化することにより得られる、骨形成能を有する骨移植材料(培養骨)の移植法が自家骨移植法の代替法となりうるのかを検討することである。

対象患者は、顎骨内に骨欠損を生じる疾患を有するもので、骨欠損に対し自家骨移植が必要と判断されるものとする。

研究試料の調整方法については、まず骨髄採取を、患者の腸骨から骨髄針を用いて 10 数 ml 採取する。採取後主治医の責任のもと、速やかに産業技術総合研究所内のセルプロセッシングセンターに搬送し、培養を行う。 自己骨髄由来培養細胞は自己血清を含む液体培地の中に骨髄を混和し、培養フラスコ内で培養する。そして、培養フラスコ底面に接着した細胞を増殖させる。これは骨髄細胞に含まれる間葉系細胞の増殖である。この増殖した細胞を培養フラスコより剥離して、再度培養フラスコ内で培養することで必要細胞数を確保する。その後、剥離した細胞を人工骨と混和して培養を行う。上記培養時に添加因子を培地中に加えることにより間葉系細胞は約2週間で骨芽細胞へ分化する。この培養操作により骨芽細胞・骨基質を含む人工骨(培養骨)が作製可能である。

移植手技については、基本的に従来法に準ずる。コンタミネーションを否定した培養骨はセルプロセッシングセンターより速やかに奈良県立医科大学付属病院 中央手術部へ搬送され、移植手術を実施する。対象患者の術中管理、術後管理は従来法を用いた場合と何ら変わらない。

本臨床研究における治療効果の判定は、口腔外科外来の定期受診にて行う。対照を従来法による治療症例とし、定期的に CT 撮影もしくはエックス線撮影を行う。

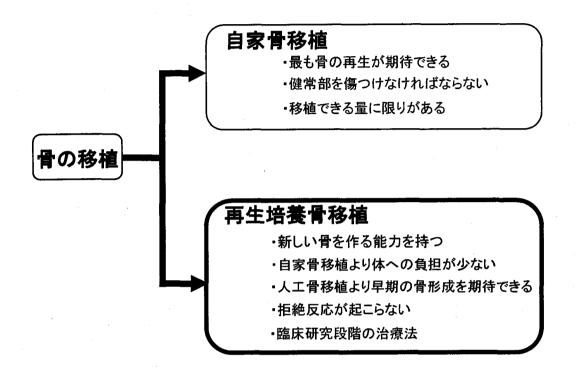
自己骨髄培養細胞による顎骨疾患の治療研究 説明書

本臨床研究の目的

現在、口腔領域(顎の骨など)の骨疾患に対して、その疾患に対する治療を行う場合、病気により失われた骨をいかに元に戻すかは大きな課題です。従来は外科的な手術により別の部位にある健康な骨の移植や、人工的な骨(人工骨)の移植などを行ってきました。しかし、これらの治療法は体への負担が大きいことや、治療期間が長期化するという問題点があります。このような問題点を克服するために、奈良県立医科大学口腔外科では「再生療法」という新しい治療方法の研究が進められてきました。

再生療法を応用することで、近年では骨疾患により失われた骨を、体への負担が少ない方法で治療することが可能になりつつあります。その方法は**再生培養骨移植**と言いい、患者さん自身の骨髄から骨を作る細胞を取り出し、**体の外で骨を作って患部に移植する**というものです。すでに当附属病院整形外科より、大腿骨壊死(足の骨の病気)に対し、本研究と同様の治療方法により骨修復が得られたとの報告がなされています。しかし、現在のところ顎の骨には適用されていないため、この新しい治療法を**口腔外科領域にも応用し、体への負担が少ない顎の骨の治療法を確立**しようとするものです。

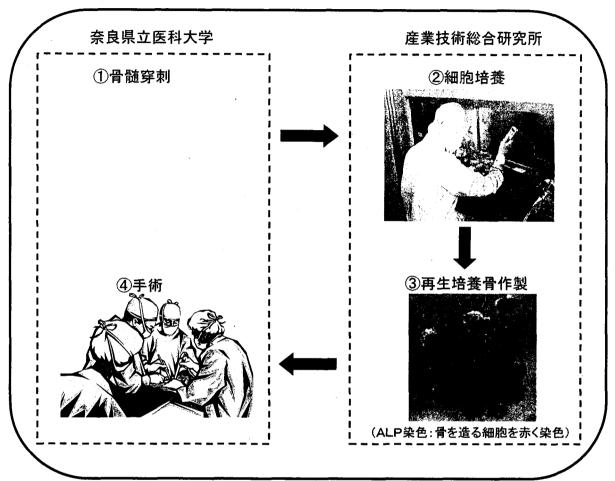
この臨床研究は奈良県立医科大学「医の倫理審査委員会」で審査され、奈良県立医科大学学長により承認されたものです。


再生培養骨移植と従来の治療法との違い

顎の骨のできもの(顎骨嚢胞)により顎の骨が大きく失われた場合、従来の治療方法は患者さん本人の健康な部位(主に腰の骨)から採取した骨(自家骨)または、骨の成分を合成して作られた人工骨を移植してきました。また、失われた骨の大きさによっては、自然治癒に頼っています。自家骨を移植する方法は、現在のところ最も骨の治癒が期待できますが、健康な部位を傷つけなければならず、採取できる量にも限りがあります。人工骨を移植する方法では使用量に制限はありませんが、移植した人工骨に骨再生能力(骨を作る能力)が無いため、大きな範囲の疾患に用いるのは難しく、周囲の骨とつながるのに長い治療期間を必要とします。

本臨床研究で行う治療方法には、自家骨を移植する方法(自家骨移植)と、患者さん本人の細胞により作られた骨(再生培養骨)を移植するという方法(再生培養骨移植)があり、どちらの方法を選択するかは患者さんご自身の意思で決定することができます。再生培養骨移植では、「患者さん本人の骨髄から、体の外で、骨を作る細胞を培養し、作製した再生培養骨を移植する」ところが自家骨移植との大きな違いです。骨髄の採取は自家骨を採取するよりも、体への負担が少ない方法で行うことができ、自家骨とほぼ同等の骨修復力が期待されます。再生培養骨移植の危険性として、骨髄の細胞を培養するときに細菌やウイルスの感染がおこる可能性があります。しかし、感染を防ぐために培養前、培養中、培養後の各段階において検査を行うなどの様々な手

段を講じており、また細胞培養は現段階で考えられる最高の設備を有する施設で行われるため、 その可能性は極めて稀です。また、治療後に予期しない合併症を生じる可能性があります。


以下に骨が大きく失われた場合の骨移植の方法についての比較を図表で示します。

再生培養骨の作製方法

まず患者さん自身の細胞を取り出すために、腰の骨から骨髄を注射器で10数 ml 採取する必要があります(下図①)。骨髄採取時の痛みに対しては、局所麻酔を行います。注射した部位には針による小さな穴ができますが、2日程で自然に治ります。自家骨採取と比較すると、非常に体への負担が少ない方法です。採取した骨髄に対して、「細胞培養」(下図②)という操作を行い、骨を作る能力のある細胞を3週間ほどかけて増やします。そしてこの細胞を人工骨と組み合わせ、さらに2週間ほど細胞培養を行うことで、人工骨の表面に患者さん自身の細胞により骨が作られます。この骨を再生培養骨(下図③)といい、自分自身の細胞が作った骨なので拒絶反応は起こらず、移植後速やかに骨の形成が始まります。このようにして作製された再生培養骨は、奈良県立医科大学の中央手術室で骨が失われている部位に移植されます(下図④)。

本治療研究の流れ

これらの細胞培養は、病院外にある培養専門施設(**産業技術総合研究所のセルプロセッシングセンター**)で行われます。また細胞の一部と再生培養骨の一部は、後日の検査のために冷凍保存させていただきます。なお、細胞培養を行うための下地(培地)には患者さん自身の栄養(自己血清)を使用しますので、血液を約 400mL 採血させていただく必要があります。詳細は文末の"再生培養骨移植のフローチャート"を参照して下さい。

再生培養骨移植の危険性とそれらが生じた場合の措置

再生培養骨移植は、健康な部位から骨を取る必要がなく、腰の骨から骨髄を吸引するだけという体への負担の少ない優れた方法ですが、研究段階の治療法のため**完全なものではありません**。

本治療方法特有の危険性として、骨髄細胞を培養するときに細菌やウイルスの感染がおこる可能性があります。しかし、感染を防ぐために培養前、培養中、培養後の各段階において検査を行うなどの様々な手段を講じており、また細胞培養は現段階で考えられる最高の設備を有する

施設で行われるため、その可能性は極めて稀です。また、治療後に予期しない合併症を生じる可能性があります。本研究の治療方法にて十分な骨形成が得られない場合は、従来法による治療を行います。

手術方法は**これまでの方法と同様**であり、手術の安全性に問題はありません。もちろん、これまでの治療方法で認められるような合併症(術後の発熱、疼痛、腫脹、知覚低下や移植骨が生着しない等)がおこる可能性はあります。それらが生じた場合は、これまでの治療方法と同様に、迅速に対処致します。

移植に用いる再生培養骨の安全性が確認できなかった場合は、移植手術を中止することがあります。培養開始後に患者さんの都合(病気等)で予定日に手術ができない場合は、再生培養骨を用いた移植手術を行えないことがあります。それらの場合は、従来の治療法である自家骨移植を行うか、または再度、骨髄穿刺を行い、培養骨の移植を行うかは患者さんご自身により選択して頂くことができます。

同様の治療方法による臨床研究を、当附属病院整形外科では平成13年より現在までに整形外科領域の骨の病気を対象に50症例行っていますが、腫瘍発生や感染といった再生培養骨による有害事象は1例も報告されていません。しかし、これらを心配される方は従来の治療法を受けられる事をお勧め致します。

健康被害に対する補償

本臨床研究との因果関係に係わらず、健康被害が生じた場合は、患者さんの安全確保を最優先し、被害を最小限にとどめるために必要な治療を行います。本臨床研究に伴う特別な補償はありません。

同意にあたって

この臨床研究への協力はあなたの自由意志であり、強制ではありません。ご協力頂ける場合の治療法の選択もあなたの自由意思により決定できます。また、本臨床研究に同意できない場合においても、あなたの不利益になるようなことはありません。また、一旦同意された後でも、同意を撤回することはいつでも可能です。拒否または撤回をされても、あなたが不利益を受けることはなく、従来法による治療が継続されることをお約束致します。

治療に関わる費用について

本研究に係る外来診療、術前・術後検査、手術(骨髄穿刺を含む)及び細胞培養に掛かる費用は、奈良県立医科大学口腔外科学講座および産業技術総合研究所 セルエンジニアリング研

究部門 組織・再生工学研究グループですべて負担させていただきますが、**通院交通費は患者さんの自己負担**となります。

追跡調査について

手術後の経過を観察するだけでなく、本臨床研究の適切な評価を行うために追跡調査を行います。退院後少なくとも5年間は、口腔外科外来にて定期的に移植部位ならびに、全身状態の観察を行い、必要に応じて種々の検査を行います。また、手術後3ヶ月、6ヶ月、12ヶ月目、以後必要に応じてCT撮影、又はレントゲン撮影を行います。

個人情報について

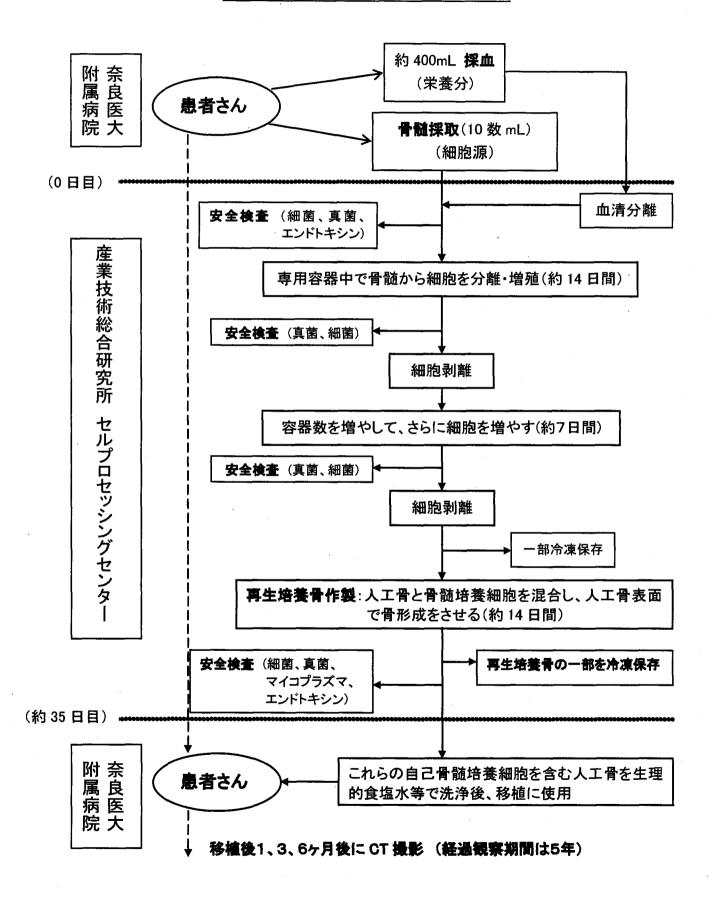
患者さんの個人情報を保護することは、法律で定められた医師、歯科医師の義務です。個人情報の保護にあたっては、探取された骨髄や、血液などの検体からは氏名、生年月日、住所などの個人を特定できる情報は取り除かれ、代わりに新しく符号が付けられることで(「匿名化」と言います)、個人を特定されないようにします。

この研究によって得られた結果は、個人情報保護法にのっとり、個人情報の識別ができないようにして、学会や学術雑誌等で公表されることがありますので、ご了承下さい。

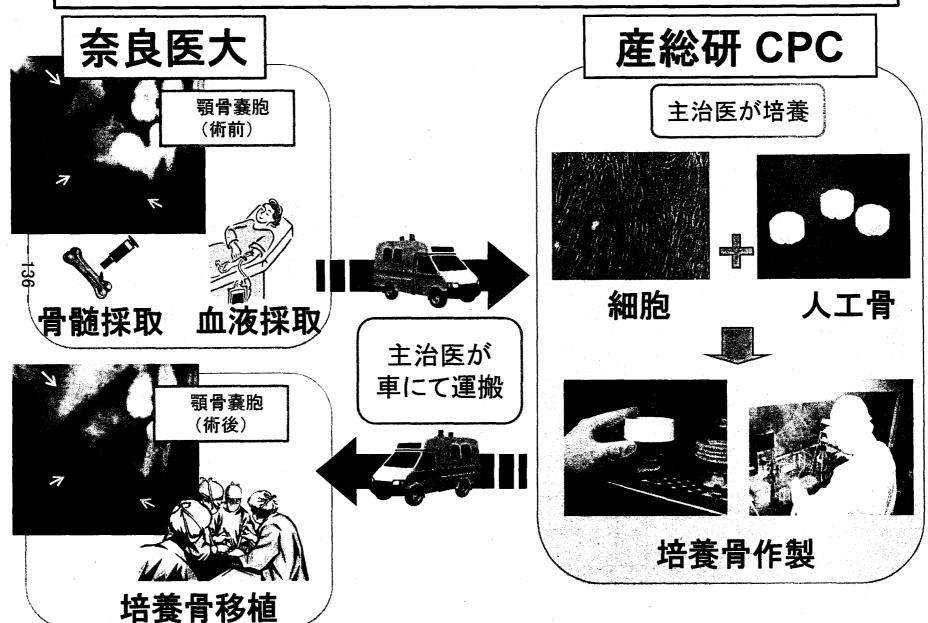
基礎研究のための細胞利用

骨髄培養細胞の一部を利用して、**基礎研究**を行わせていただきます。具体的には、実験室で 骨髄培養細胞を使って組織再生に関わる実験を行います。このような研究を通し、再生医療は 進歩してきました。骨髄培養細胞の一部を利用して行う、基礎研究にご理解いただければ幸いで す。

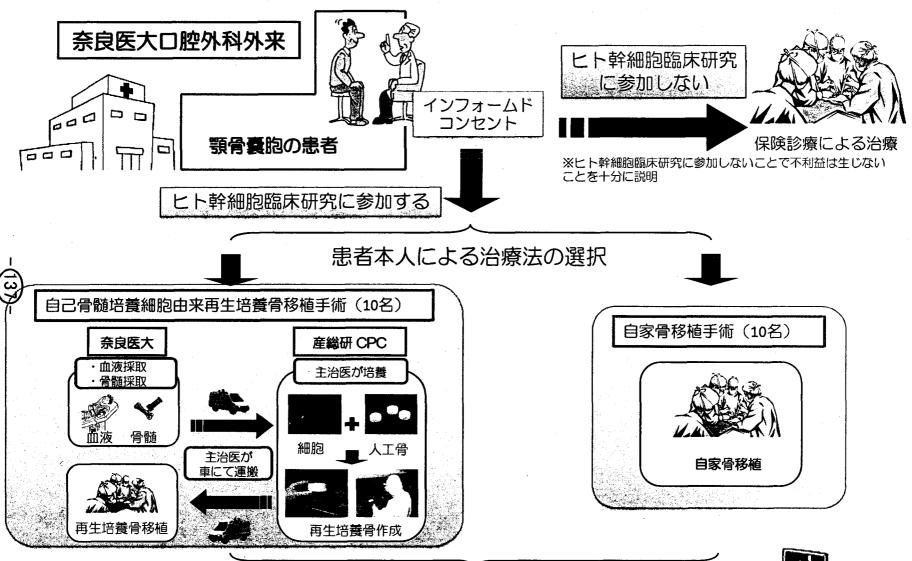
基礎研究で使用する細胞からは個人を特定できる情報は取り除かれ、匿名化処理が施されているため、個人が特定されることはありません。また、個人を特定するような実験は行われません。基礎研究のための細胞利用への同意は任意であり、強制するものではありません。


本臨床研究についての問い合わせ先

奈良県立医科大学口腔外科学講座 教授 桐田忠昭 0744-22-3051 (内線 3427)


苦情の受付先

奈良県立医科大学付属病院医療相談室 0744-22-3051 (内線 3224)


再生培養骨移植のフローチャート

顎骨嚢胞摘出後の骨欠損を対象とした 自己骨髄培養細胞由来再生培養骨の有用性を検証する研究

顎骨嚢胞摘出後の骨欠損を対象とした 自己骨髄培養細胞由来再生培養骨の有用性を検証する研究

