Virus in Prostate Tumors with R462Q RNASEL

Table 2. Frequency of XMRV-Infected Prostatic Cells Determined by FISH

Patient RNASEL Genotype* Number of Cells Counted® Number of FISH-Positive Cells (%) XMRV FISH® XMRV gag RT-PCR

VP 88 QQ © 408 ’ 5(123) ) + +
v 3 QQ 526 6(1.14) + -
VP 42 Qq 530 6(113) -+ ¥
VP 62 Q@ 904 10 {1.11) 4 +
VP 29 Q 659 7.(1.06) ++ +
VP 79 QQ a64 2 (043) + +
VP 10 QQ 872 1012 4= -
vP 3§ [} 849 - 1012 ’ - +
e . QQ 843 1(002) +—- +
VP 45 RQ 987 - 00 - -
VP45 RQ 794 FXC - -
VP 30 RR 661 1(035) /- -
VP 50 /R 787 11013 = -
VP 51 RR 842 0 - -

*RNASEL genotypes are as follows: QQ, homoazygous R461Q variant; RQ, heterozygous; RR, homozygous wild-type.

®All types of prostatic cells are included.
i = 0.19%-0.29%; + = 0.2%—1%; ++= >1%,
DO: 10.1371/joumal.ppat.0020025.1002

of humans with a xenotropic MuLV-like agent. Although our
efforts to clone the sites of XMRV integration into the host
genome have been limited by the small amounts of prostate
tissue available for this purpose, our work to clone such sites
is ongoing and will provide an important additional piece of
evidence for XMRV infection in humans.

The XMRYV sequence is not found in human genomic DNA,
and none of the human endogenous retroviruses, including
the only known gammaretrovirus-like human endogenous
sequences (hERVs E and T) {70], bare any significant similarity
to the XMRV genome. This indicates that XMRV must have
been acquired exogenously by infection in positive subjects.
From what reservoir and by what route such infections were
acquired is unknown. It seems unlikely that direct contact
with feral mice could explain thé observed distribution of
infection in our cohort, since there is no reason to believe
that rodent exposure would vary according to RNASEL
genotype. It is possible that infection is more widespread
than indicated by the present studies, especially if, as seems
likely, individuals with the wild-type RNase L clear infection
more promptly than those with the QQ genotype. But if 50, a
cross-species transfer model of XMRV infection would
require improbably high levels of rodent exposure for a
developed society like our own, Thus, although the viral
sequence suggests that the ultimate reservoir of XMRV is
probably the rodent, the proximate source of the infection
seems unlikely to be mice or rats. Provisionally, we favor the
notion that the XMRYV infections we have documented were
acquired from other humans, i.e,, that XMRV may have been
resident in the human population for some time. This
speculation will, however, require direct epidemiologic
validation. It also remains to be determined if RNase L
R462Q homozygotes are more sensitive to the acquisition of
infection, or are simply less likely to clear infection once
acquired. This is an important issue, since if the latter model
is correct, it would imply that in younger humans, XMRV
prevalence may be higher than what is observed in our

prostate cancer cohort (mean age 58.7 y). We are currently.
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developing serologic assays for use in. population-based
studies that should shed light on these matters.

While presented work documents a clear link of XMRV
infection to RNase L deficiency, we emphasize that the data
we Have accumulated does not mandate any etiological link to
prostate cancer, Furthermore, our finding that XMRV
infection is targeted to stromal cells and not to carcinoma
cells and the fact that the XMRV genome harbofi no host-
derived oncogenes rule out two classical models for retroviral
oncogenesis: direct introduction of a dominantly acting
oncogene and insertional activation of such a gene, However,
more indirect contributions of the virus to-the tumor can
certainly be envisioned. Recent work has shown that stromal
cells have an active role in directly promoting tumorigenesis
of adjacent epithelial cells by producing various cytokines
and growth factors that serve as proliferative signals [71] or
indirectly by modifying the tumor microenvironment by
promotion of angiogenesis or recruitment of inflammatory
mediators leading to oxidative stress [72]. In- particular,
cancer-associated fibroblasts” stimulate growth of human
prostatic epithelial cells and alter their histology in vivo
[73}. Tt is conceivable that XMRV-infected prostatic stromal
cells could produce and secrete growth factors, cytokines or
other factors that stimulate cell proliferation or promote
oxidative stress in surrounding epithelia. Such a paracrine
mechanism could still function quite efficiently even with the
relatively small number of XMRV-infected cells that charac-
terize the lesion.

Finally, we note that the identification of an exogenous
infection such as XMRV could help explain why not all
genetic studies have consistently identified RNase L as a
prostate cancer susceptibility factor. If such an infection were
linked, however indirectly, to prostate cancer risk, and if the
prevalence of infection is not uniform in different popula-
tions, populations with low XMRV prevalence might be
expected to show no association of RNASEL lesions to
prostate cancer.

Clearly, resolution of these issues will require much further
investigation, We need to determine the prevalence of XMRV
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enhance our ability to probe these and other questions in the
near future, : o

Materials and Methods

Genotyping of pati and p tissue processing. All human
samples used in this study were obtained according to protocols
pproved by the Cleveland Clinic’s Institutional Review Board, Age,

clinical parameters, and geographical locations of XMRV-positive
prostate cancer cases are provided in Table S8, Men scheduled to
jergo p! ies at the Cleveland Clinic were genotyped for
the R462Q (1385G:>>A) RNASEL variant using a premade TAQMAN -
genotyping assay (Applied Biosystems, Foster City, California, United
States; Assay c__935391__1) on DNA isolated from peripheral blood
mononuclear cells. Five nanograms of genomic DNA were assayed
according to the manufacturer’s instructions, and analyzed on an
Applied Bi 7900HT Seq D ion System instrument.
I diately after pr ies, tissue cores were. taken from both
the transitional zone (the site of benign prostatic hyperplasia, BPH)
and the peripheral zone (where cancer generally occurs), snap-frozen
in Jiquid nitrogen, and then stored at 80 °C. Remaining prostate
tissue was fixed in 10% neutral buffered formalin, processed, and
embedded in paraffin for later histological analyses, Frozen tissue
cores were transferred from dry ice immediately to TRIZOL reagent
(Invitrogen, Carlsbad, California, United States), homogenized with a
power homogenizer or manually using a scalpel followed by a syringe,
and total RNA was isolated according to the manufacturer's
instructions. The prostate tissue RNA was then subjected to RNase-
free DNase I (Ambion, Austin, Texas, United States) digestion for 80
min at 87 °C. The sample was then extracted with phenol -and the
RNA was precipitated with isopropanol overnight at —20 °C followed
by centrifugation at 12,000 g for 30 min at 4 °C. Poly-A RNA was
isolated from the DNase digested total RNA using the Oligotex
mRNA Midi Kit (Qiagen USA, Valencia, California, United States) as
instructed by the manufacturey. The poly-A RNA concentration was
measured using the RIBOgreen quantitation kit (Molecular Probes,
Invitrogen), and the samples were stored at —80 °C.
- Microarray screening: Virochip microarrays used in this study were
identical to those previously described {20-22]. Prostate'tumor RNA
samples were amplified and labeled using a modified Round A/B
random PCR method and hybridized to the Virochip microarrays as
reported previously (Protocol 81 in [21]). Microarrays were scanned
with an Axon 4000B scanner (Axon Instruments, Union City,
California, United States) and gridded using the bundled GenePix
3.0 soft Microarray data have been submitted to the NCBI GEO

Figure 9. Detection of XMRV Protein in Prostatic Tissues Usin
Immunostaining 3 -
Prostatic tumor tissue sections from-QQ cases VP62 (A and B) and VP88
(C and D), as well as an RR case VP51 () were stained, then visualized by
immunofluorescence (left) or bright field {middie) using a monocional
Entlbody to SFFV Gag protein. Nuclei are counterstained with

3 ged images p g to the positive cells are
shown on the right. Scale bars are § um in (A), (B), and (E) and 10 pm in
() and (D}

DOL: 10.1371/journal. ppat.0020025.9009

infection in the general ‘population, understand its routes of
transmission and tissue tropism, explore its associations with
pre-maligant and other prostatic conditions, and define the
biochemical interactions of the virus with the 2-5A/RNase L

system. The availability of molecular clones, infectious virus

stocks, and susceptible cell culture systems should greatly
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database (GSE3607). Hybridization patterns were interpreted using E-
Predict as previously described [22) (Table 51). To make Figure 1,
background-subtracted hybridization i ities of all retroviral
oligonucleotides (205) were used to cluster samples and the
cligonucleotides. Average linkage hierarchical clustering with Pear-
son correlation as the similarity metric was carried out using Cluster
(version 2.0) {74]. Cluster images were generated using Java TreeView
(version 1.0.8) [75].

Genome cloning and sequencing, Amplified and labeled cDNA
from the VP35 tumor sample was hybridized (o a hand-spotted
microarray containing several retroviral oligonucleotides, which had
high hybridization intensity on the Virochip during the initial
microarray screening. Nucleic acid hybridizing to two of the
oligonucleotides (9628654._817__rc derived from MTCR: TTC GCT
TTA TCT GAG TAC CAT CTG TTC TTG GCC CTG. AGC CGG GGG
CCA GGT GCT CGA CCA CAG ATA TCC T; and 9626955_16__rc
derived from SFFV: TCG GAT GCA ATC AGC AAG.AGG CTT TAT
TGG GAA CAC GGG TAC CCG GGC GAC TCA GTC TGT CGG AGG
ACT G) was then individually eluted off the surface of the spots and
amplified by PCR with Round B primers. Preparation of the hand-
spotted array, hybridization, probe recovery, and PCR amplification
of the recovered material were carried out according to Protocol S1.

e d amplified DNA samples were then cloned into pCR2.1+
TOPO TA vector (Invitrogen), and the resulting libraries were
screencd by colony hybridization with the corresponding above

oligonucleotides as probes. Hybridizations were carried out using
Rapid-Hyb buffer (Amersham, Piscataway, New Jersey, United States)
according to the manufacturer's protocol at 50 °C for 4 h, Eight
positive clones were sequenced, of which two (one from each library;
clones K1 and K2R1 in Figure 2A) were viral and had 94-95% nt
identity to MTCR. |

To sequence the remainder of the VP85 genome as well as the
entire genome from the VP42 tumor, we amplified fragments of the
genome by PCR using either amplified (Round B) or unamplified
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(Round A) cDNA prepared for original Virochip screening. This was
accomplished first using a combination of primers derived from the
sequence of MTCR and earlier recovered clones of XMRV. The two
overlapping fragments from VP62 were amplified by PCR from cDNA
generated by priming poly-A RNA with random hexamers, All PCR
primers are listed in Table $2. The amplified fragments were cloned
into pCR2.1-TOPO TA vector (Invitrogen) and sequenced using M13
scquencing primers. Genome assembly was carried out using
CONSED version 13.84 for Linux [76],

PCR. Screening of tumor samples by gag nested RT-PCR was
carried out according to Protocol $2. PCR fragments in all positive
cases were gel-purified using QIAEX 1I gel extraction kit (Qiagen),
cloned into pCR2.1-TOPO TA vector (Invitrogen), and sequenced
using M13 sequencing primers.

Pol PCR was carried out using amplified cDNA (Round B material)
as the template.

Sequence of the primers used for amplification (2670F, 3870R,
3810F, and 5190R) is listed in Table $2. Amplified products were gel-
purified using QIAEX II gel extraction kit (Qiagen), and purified
products were directly used for sequencing.

Phylogenetic analyses. Xenotropic mERV Chromosome 1, xeno-
tropic mERV Chromosome 4, and xenotropic mERV Chromosome 9
were chosen by BLAST querying the NCBI nr database with the

plete XMRYV g ani ing the most similar full-length
proviral sequences, all of which happened to have xenotropic
envelopes (Figure S2C). Polytropic mERV Chromosome 7 and
polytropic mERV Chromosome 11 were chosen by selecting NCBI
nr full-length proviral sequences with envelopes most similar to a
prototygev polytropic clane MX27 [77). Similarly, modified polytropic
mERV Chromosome 7 and modified polytropic mERV Chromosome
12 were selected on the basis of similarity to a prototype-modified
polytropic clone: MX33 .(77]. U8 analysis was performed using
previously described ref. q : Mcvl8, Mcvs, Mxv2,
Mcvil, Mxvll, and HEMV18 [49); CWM-T-15, CWM-T-15-4, CWM-.
T-25a, and CWM-T-25b [48]. -

To generate the neighbor-joining tree of complete genomic
sequences (Figure 3), the seq were first lly edited to
make all genomes the same length, i.e, R to R, The edited sequences
were then aligned with ClustalX version 1.82 for Linux (78,79] using
default settings. The tree was generated based on positions without
gaps only: Kimura correction for multiple base substitutions [80] and
bootstrapping with n = 1000 were also used.

All other trecs were generated as above, except sequences were
first trimmed to the same length, gaps were included, and Kimura
correction was not used, as using these parameters did not have any
significant effect on the trees.

Antibodies. Monoclonal antibody to SFFV Gag protein was
produced from R187 cells ([65]; ATCC: CRL-1912) grown in DMEM
(Media Core, Cleveland Clinic Foundation, Cleveland, Ohio, United
States) with 10% ultra-low IgG FBS (Invitrogen) until confluent.
Conditioned media was collected every three days from confluent
cultures. Five ml of conditioned media per preparation was
centrifuged at 168 X g for 5 min at 4 °C. Supernatant was filtered
through a 0.22-pm syringe filter unit (Millipore, Billerica, Massachu-
setts, United States) and concentrated 16-fold in an Amicon ultra-
filtration unit with a 100-kDa molecuiar weight cutoff membrane
(Millipore). Sodium azide was added to a final concentration of
002%. Concomitant XMRV FISH/cytol in i fluotescence
was performed using a mouse anti-cytokeratin AEV/AES (20:1
mixture) lonal antibody (Chemi International, Temecula,
California, United States) capable of recognizing riormal and
neoplastic cells of epithelial origin.

FISH. The XMRV-35 FISH probe cocktail was generated using both
2.15-kb and 1.84-kb seg of the viral g btained by PCR
with forward primer-2345, 5' ACC CCT AAG TGA CAA GTC TG %
with reverse primer-4495, 5' CTG GAC-AGT GAA TTA TAC TA 3’
and forward primer-4915, 5' AAA TTG GGG CAG GGG TGC GA 3
with reverse primer-6755, 5’ TTG GAG TAA GTA CCT AGG AC 8,
both cloned into pGEM-T (Promega, Madison, Wisconsin, United
States). The recombinant vectors were digested with EcoRT to velease
the viral cDNA fragmerits, which were purified after gel electro-
phoresis (Qiagen). The purified viral cDNA inserts were used in nick
translation reactions to produce SpectrumGreen dUTP fluorescendly
labeled probe according to manufacturer’s instructions (Vysis Inc.,
Des Plaines, [llinois, United States). Freshly baked slides of prostatic
tissues or tissue microarray arvays with ~4-pim thick tissue sections
were deparaffinized, rehydrated, and subjected to Target Retrieval
{Dako, Glostrup, Denmark) for 40 min at 95 °C. Slides were cooled to
room temperature and rinsed in H,O. Proteinase K (Dako) at 1:5000
in Tris-HC} (pH 7.4) was applied directly to slides for 10 min at room
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temperature. Adjacent tissue sections were also probed with
SpectrumGreen dUTP fluorescently labeled KSHV-8 DNA (nts
85820-92789) as a negative control or, as a positive cantral with
SpectrumGreen and SpectrumOrange labeled TelVysion DNA Probe
cocktail (Vysis), specific for subtelomeric regions of the P and Q arms
of human Chromosome 1 as a positive control to ensure the tissue
was completely accessible to FISH. FISH slides were examined using a
Leica DMR microscope (Leica Micro-Systems, Heidelberg, Germany),
cquipped with a Retiga EX CCD camera (Q-ImagingVancouver,
British Columbia, Canada). FISH images were captured using a Leica
TCS SP2 laser scanning confocal with a 63X oil objective numerical
aperature 1.4 (Leica Micro-Systems) microscope. XMRV nucleic acids
were visualized using i i ity projections of optical slices
acquired using a 488-nm argon-laser (emission at 500-550 nm).
TelVysion DNA Probes were visualized using maximum intensity
projections of optical slices acquired using a 48&nm argonlaser
{emission at 500-550 nm) and 568-nm krypton-argon-laser (emission
at 575-680 nm) DAPI was visualized using i i i

projections of optical slices acquired using a 364-nm UV-laser
(emission at 400-500 nm). Slides were subsequently washed in 2X SSC
(0.3 M sodium chloride and 0.08 M sodium citrate, [pH 7.0)) to
remove coverslips, and H&E stained for morphological evaluation.

IHC, THC on human tissues was performed on a Benchmark
Ventana Autostainer (Ventana Medical Systems, Tucson, Arizona,
United States). Unstained, formalin-fixed, paraffin-embedded pros-
tate sections were placed on electrostatically charged slides and
deparaffinized followed by a mild cell conditioning achieved through
the use of Cell Conditioner #2 (Ventana Medical Systems). The
concentrated R187 monoclonal antibody against SFFV p30 Gag was
dispensed manually onto the sections at 10 g per ml and allowed to
incubate for 32 min at 37 °C. Endogenous biotin was blocked in
sections using the Endogenous Biotin Blocking Kit (Ventana Medical
Systems). Sections were washed, and biotinylated ImmunoPure Goat
Anti-Rat IgG (Pierce Biotechnology, Rockford, lllinois, United States)
was applied at a concentration of 4.8 pg per ml for 8 min. To detect
Gag protein localization, the Ventana Enhanced Alkaline Phospha-
tase Red Detection Kit (Ventana Medical Systems) was used. Sections
were briefly washed in distilled water and counterstained with
Hematoxylin Il (Ventana Medical Systems) for approximately 6
min. Sections were washed, dehydrated in graded alcohols, incubated
in xylene for 5 min, and coverslips were added with Cytoseal (Microm
International, Walldorf, Germany). Negative controls were performed
as above except without the addition of the R187 wmonoclonal
antibody.

Concomitant XMRV FISHlcytokeratin IHC was performed on
slides of prostate tissue from patient VP62. First, sections were
immunostained for cytokeratin AEIfAES using the Alexa Fluor 594
Tyramide Signal Amplification Kit (Molecular Probes, Invitrogen).
Briefly, unstained, formalin-fixed, paraffi bedded sections cut at
~4 um were placed on electrostatically charged slides, baked at 65 °C
for at least 4 h, deparaffinized in xylene, and rehydrated through
decreasing alcohol concentrations. Slides were incubated in Protease
IT (Ventana Medical Systems) for 3 min at voor temperature and
washed in phosphate-buffered saline (PBS) in peroxidase quenching
buffer (PBS + 3% H,0,) for 60 min at room temperature, then
incubated with 1% blocking reagent (10 mg/ml BSA in PBS) for 60
min at room temperature. The slides were incubated with cytokeratin
AE1AE3 antibody diluted in 1% blocking reagent for 60 min at room
temperature and rinsed $X times in PBS, Goat anti-mouse IgG-
horseradish peroxidase (Molecular Probes, Invitrogen) was added and
incubated for 60 min at room temperature, The slides were rinsed 8X
in PBS. The tyramide solution was added to the slides for 10 min at
room temperature and the slides were rinsed 3X in PBS. Slides were
then placed in Target Retrieval solution (Dako) for 40 min at 95 °C.
FISH for. XMRV was performed as described above except in the
absence of proteinase K treatment. After FISH, the slides were

i with V. hield Mounting Medi plus DAPI (Vector
Labs, Burlingame, California, United States) and examined using
fluorescence microscopy. Immunofiuorescence images were captured
using a Texas red filter with a Leica DMR microscope (Leica Micro-

Systems), equipped with a Retiga EX CCD camera (Qlmaging).

Supporting information

Figure S1. Complete Nucleotide Seq of XMRV VP35

Numbers to the left indicate nt coordinates relative to the first nt.
Predicted open reading frames for Gag, Gag-Pro-Pol, and Env
polyproteins are shown below the corresponding nt. Characteristic
24-nt deletion in the 5' gag leader is indicated with a triangle. Other
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genome features as well as primers used in the nested gag RT-PCR are
shown as arrows. )

Found at DO \0.!571Ijouma\.ppa!.0020025.13001 {558 KB PDF).

Figure 52, Phylogenetic Analysis of XMRV Based on Predicted Gag,
Pro-Pol, and Env Polyproteins

Predicted Gag (A), Pro-Pol (B), and Env (C) sequences of XMRV VP85,
VP42, and VP62 (red) as well as the correspondihg sequences from
MTCR; MuLVs DG-75, MCF1238, Akv, Moloney, Friend, and
Rauscher; feline leukemia virus (FLVY; koala retrovirus (KoRV);
gibbon ape leukemia virus (GALV), and a set of representative non-
ecotropic proviruses (mERVs) were aligned using ClustalX. The
resulting alignments were used to generate unrooted neighbor-
Joining trees (see Materials and Methods). Sequences are labeled as
xenotropic (X), polytropic (P), modified polytropic (Pm), or ecotropic
(E).

Found at DOL: 10.1871 fjournal.ppat.0020025.55002 (186 KB EPS).

Figure $3. Comparison of XMRV US Region to Representative Non-
Ecotropic Sequences

{A) Multiple seq lig of U3 seq from XMRV VP35,
VP42, and VP62; MuLVs NZB-9-1 and NFS-Th-1; and from
representative non-ecotropic proviruses [37,48,49). The sequences

were aligned using ClustalX (sce Materials and Methods). Only

sequences most similar to XMRYV are shown, Glucocorticoid response
elemenit (GRE), and TATA and CAT boxes are indicated by lines.
Direct repeat regions (boxed) are numbered according to the existing
convention [37,48). Triangle indicates a 190 nt insertion in polytropic
proviruses [37]. XMRV-specific AG dinucleotide insertion is shown in
red. Dots denote nt identical to those from XMRV, and deleted nt
appear as spaces.

(B) Phylogenetic tree based on U3 nt sequences. Multiple sequence
alignment from (A) was used to g an d neighb
Jjoining tree (see Materials and Methods). Bootstrap values (n = 1000
trials) are shown as percentages. US sequences from XMRV are shown
in red.

Found at DOI: 10.1371/journal.ppat.0020025.5g003 (188 KB EPS).
Protacol 51, Probe Recovery from Hand-Spotted Microarrays by
“Scratching™

Found at DOI: 10.1371/journal.ppat.0020025.5d001 (83 KB PDF).
Protocol 52. XMRV gag Nested RT-PCR

Found at DOL: 10.1371fjournal ppat.0020025.5d002 (172 KB PDF),
Table S1. Computational Viral Species Predictions Using E-Predict
for the Virochip Microarrays Shown in Figure 1

Found at DOI: 10.1371/journal.ppat.0020025.5t001 (48 KB DOC).
Table 52. PCR Primers Used for Sequencing of XMRV Genomes
Found at DOL: 10.1371/journal.ppat.0020025.5t002 (45 KB DOC).

Table 88, Age, Clinical Parameters, and Geographical Locations of
XMRV-Positive Prostate Cancer Cases

Found at DOL: 10.1371/journal.ppat.0020025.5t003 (39 KB DOC).

Video S1. Confacal Optical Image Planes of a Representative XMRV .

FISH Positive Cell
Optical image planes (0.5 pm step-size) of the XMRV FISH positive
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Accession Numbers

Accession numbers from Gen Bank (http:ifiwww.ncbi.nlm.nih.gov/
Genbank) are: AKV MuLV (J01998), feline leukemia virus
(NC_001940), Friend MuLV (NC__001872), gibbon ape leukemia
virus (NC__001885), koala retrovirus (AF151794), modified polytropic
mERV Chromosome 7 (ACI27565; nt 64,355-72,720), modified
polytropic mERV' Chromosome 12 (AC153658; nt 85,452-93,817),
Moloney MuLV (NC_001501), MTCR (NC..001702MuLV_ DG-75
(AF221065), MuLV MCF 1283 (U13766), MuLV NCI-417 (AAC97875),
MuLV NZB-9-1 (K02730), polytropic mERV Chromosome 7
(AC167978; nt 57,453-65,805), polytropic mERV Chromosome 11
(168-229,176,580), prototype polytropic' clone MX27 (M17327),
Rauscher MuLV (NC_001819), pic mERV Chror 1
(AC083892, nt 158,240-166,448), xenotropic mERV Chromosome 4
(AL627077; nt 146,400-154,685), pic mERV Ch

(AC1218183; nt 37,520-45,770), XMRV VP35 (DQ241301), KMRV VP42
(DQ241302), and XMRV VP 62 (DQ399707).
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